

Lecture Notes in Computer Science 4368
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Thomas Erlebach Christos Kaklamanis (Eds.)

Approximation and
Online Algorithms

4th International Workshop, WAOA 2006
Zurich, Switzerland, September 14-15, 2006
Revised Papers

13

Volume Editors

Thomas Erlebach
University of Leicester
Department of Computer Science
University Road, Leicester, LE1 7RH, UK
E-mail: t.erlebach@mcs.le.ac.uk

Christos Kaklamanis
University of Patras
Department of Computer Engineering and Informatics
26500, Rio, Patras, Greece
E-mail: kakl@ceid.upatras.gr

Library of Congress Control Number: 2006939787

CR Subject Classification (1998): F.2.2, G.2.1-2, G.1.2, G.1.6, I.3.5, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69513-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69513-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11970125 06/3142 5 4 3 2 1 0

Preface

The 4th Workshop on Approximation and Online Algorithms (WAOA 2006)
focused on the design and analysis of algorithms for online and computationally
hard problems. Both kinds of problems have a large number of applications from
a variety of fields. WAOA 2006 took place at ETH Zurich in Zurich, Switzerland,
during September 14–15, 2006. The workshop was part of the ALGO 2006 event
that also hosted ESA, WABI, IWPEC, and ATMOS. The three previous WAOA
workshops were held in Budapest (2003), Rome (2004), and Palma de Mallorca
(2005). The proceedings of these previous WAOA workshops have appeared as
LNCS volumes 2909, 3351 and 3879, respectively.

Topics of interest for WAOA 2006 were: algorithmic game theory, approxi-
mation classes, coloring and partitioning, competitive analysis, computational
finance, cuts and connectivity, geometric problems, inapproximability results,
mechanism design, network design, packing and covering, paradigms for design
and analysis of approximation and online algorithms, randomization techniques,
real-world applications, and scheduling problems. In response to the call for pa-
pers, we received 62 submissions. Each submission was reviewed by at least three
referees, and the vast majority by at least four referees. The submissions were
mainly judged on originality, technical quality, and relevance to the topics of the
conference. Based on the reviews, the Program Committee selected 26 papers.

We are grateful to Andrei Voronkov for providing the EasyChair conference
system, which was used to manage the electronic submissions, the review process,
and the electronic PC meeting. It made our task much easier.

We would also like to thank all the authors who submitted papers to WAOA
2006 as well as the local organizers of ALGO 2006.

November 2006 Thomas Erlebach
Christos Kaklamanis

Organization

Program Co-chairs

Thomas Erlebach University of Leicester
Christos Kaklamanis University of Patras

Program Committee

Evripidis Bampis University of Evry
Reuven Bar-Yehuda Technion Haifa
Leah Epstein University of Haifa
Thomas Erlebach University of Leicester
Klaus Jansen Universität Kiel
Christos Kaklamanis University of Patras
Jochen Könemann University of Waterloo
Danny Krizanc Wesleyan University
Madhav Marathe Virginia Tech
Seffi Naor Microsoft Research and Technion, Israel
Alessandro Panconesi University of Rome “La Sapienza”
Pino Persiano Università di Salerno
Martin Skutella Universität Dortmund
Roberto Solis-Oba University of Western Ontario
Rob van Stee Universität Karlsruhe

Additional Referees

Amjad Aboud
Ernst Althaus
Eric Angel
Spyros Angelopoulos
Vincenzo Auletta
Nikhil Bansal
Gill Barequet
Cristina Bazgan
Eli Ben-Sasson
Jit Bose
Niv Buchbinder
Alberto Caprara
Deepti Chafekar
JiangZhuo Chen

Sergio De Agostino
Gianluca De Marco
Florian Diedrich
György Dósa
Christoph Dürr
Pierre-Francois Dutot
Alon Efrat
Ran El-Yaniv
Roee Engelberg
Guy Even
Lene M. Favrholdt
Dimitris Fotakis
Martin Fürer
Stefan Funke

Laurent Gourvès
Gregory Gutin
M.T. Hajiaghayi
Alex Hall
Han Hoogeveen
Csanád Imreh
Yuval Ishai
Liran Katzir
Rohit Khandekar
Samir Khuller
Stavros Kolliopoulos
Goran Konjevod
Alexander Kononov
Guy Kortsarz

VIII Organization

Sven O. Krumke
V.S. Anil Kumar
Christian Laforest
Asaf Levin
Matthew Macauley
Ionnis Milis
Jérôme Monnot
Shlomo Moran
Pat Morin
Petra Mutzel
Lata Narayanan
Tom O’Connell
Ojas Parekh
Marco Pellegrini
Kirk Pruhs
Dror Rawitz

Joachim Reichel
Yossi Richter
Guido Schäfer
Heiko Schilling
Roy Schwartz
Ulrich M. Schwarz
Danny Segev
Hadas Shachnai
Sunil Shende
Gennady Shmonin
Mohit Singh
René Sitters
Alexander Souza
Mauro Sozio
S. S. Ravi
Nicolas Stier

Tami Tamir
Orestis A. Telelis
Nicolas Thibault
Shripad Thite
Ralf Thöle
Alessandro Tiberi
Eric Torng
Denis Trystram
Carmine Ventre
Tjark Vredeveld
Oren Weimann
Prudence Wong
Michal Ziv-Ukelson
Vadim Zverovich

Table of Contents

Approximation Algorithms for Scheduling Problems with Exact
Delays . 1

Alexander A. Ageev and Alexander V. Kononov

Bidding to the Top: VCG and Equilibria of Position-Based Auctions 15
Gagan Aggarwal, Jon Feldman, and S. Muthukrishnan

Coping with Interference: From Maximum Coverage to Planning
Cellular Networks . 29

David Amzallag, Joseph (Seffi) Naor, and Danny Raz

Online Dynamic Programming Speedups . 43
Amotz Bar-Noy, Mordecai J. Golin, and Yan Zhang

Covering Many or Few Points with Unit Disks . 55
Mark de Berg, Sergio Cabello, and Sariel Har-Peled

On the Minimum Corridor Connection Problem and Other Generalized
Geometric Problems . 69

Hans Bodlaender, Corinne Feremans, Alexander Grigoriev,
Eelko Penninkx, René Sitters, and Thomas Wolle

Online k-Server Routing Problems . 83
Vincenzo Bonifaci and Leen Stougie

Theoretical Evidence for the Superiority of LRU-2 over LRU
for the Paging Problem . 95

Joan Boyar, Martin R. Ehmsen, and Kim S. Larsen

Improved Approximation Bounds for Edge Dominating Set in Dense
Graphs . 108

Jean Cardinal, Stefan Langerman, and Eythan Levy

A Randomized Algorithm for Online Unit Clustering 121
Timothy M. Chan and Hamid Zarrabi-Zadeh

On Hierarchical Diameter-Clustering, and the Supplier Problem 132
Aparna Das and Claire Kenyon

Bin Packing with Rejection Revisited . 146
Leah Epstein

On Bin Packing with Conflicts . 160
Leah Epstein and Asaf Levin

X Table of Contents

Approximate Distance Queries in Disk Graphs . 174
Martin Fürer and Shiva Prasad Kasiviswanathan

Network Design with Edge-Connectivity and Degree Constraints 188
Takuro Fukunaga and Hiroshi Nagamochi

Approximating Maximum Cut with Limited Unbalance 202
Giulia Galbiati and Francesco Maffioli

Worst Case Analysis of Max-Regret, Greedy and Other Heuristics
for Multidimensional Assignment and Traveling Salesman Problems 214

Gregory Gutin, Boris Goldengorin, and Jing Huang

Improved Online Hypercube Packing . 226
Xin Han, Deshi Ye, and Yong Zhou

Competitive Online Multicommodity Routing . 240
Tobias Harks, Stefan Heinz, and Marc E. Pfetsch

The k-Allocation Problem and Its Variants . 253
Dorit S. Hochbaum and Asaf Levin

An Experimental Study of the Misdirection Algorithm for
Combinatorial Auctions . 265

Jörg Knoche and Piotr Krysta

Reversal Distance for Strings with Duplicates: Linear Time
Approximation Using Hitting Set . 279

Petr Kolman and Tomasz Waleń

Approximating the Unweighted k-Set Cover Problem: Greedy Meets
Local Search . 290

Asaf Levin

Approximation Algorithms for Multi-criteria Traveling Salesman
Problems . 302

Bodo Manthey and L. Shankar Ram

The Survival of the Weakest in Networks . 316
S. Nikoletseas, C. Raptopoulos, and P. Spirakis

Online Distributed Object Migration . 330
David Scot Taylor

Author Index . 345

Approximation Algorithms for Scheduling

Problems with Exact Delays�

Alexander A. Ageev and Alexander V. Kononov

Sobolev Institute of Mathematics, pr. Koptyuga 4, Novosibirsk, Russia
{ageev,alvenko}@math.nsc.ru

Abstract. We give first constant-factor approximations for various ca-
ses of the coupled-task single machine and two-machine flow shop schedu-
ling problems with exact delays and makespan as the objective function.
In particular, we design 3.5- and 3-approximation algorithms for the
general cases of the single-machine and the two-machine problems, re-
spectively. We also prove that the existence of a (2 − ε)-approximation
algorithm for the single-machine problem as well as the existence of a
(1.5 − ε)-approximation algorithm for the two-machine problem implies
P=NP. The inapproximability results are valid for the cases when the
operations of each job have equal processing times and for these cases
the approximation ratios achieved by our algorithms are very close to
best possible: we prove that the single machine problem is approximable
within a factor of 2.5 and the two-machine problem is approximable
within a factor of 2.

1 Introduction

In this paper we consider two scheduling problems with exact delays. In both
problems a set J = {1, . . . , n} of independent jobs is given. Each job j ∈ J
consists of two operations with processing times aj and bj separated by a given
intermediate delay lj, which means that the second operation of job j must start
processing exactly lj time units after the first operation of job j has been com-
pleted. In the single machine problem all operations are executed by a single
machine. In the two-machine (flow shop) problem the first operations are exe-
cuted by the first machine and the second ones by the second one. It is assumed
that at any time no machine can process more than one operation and no pre-
emptions are allowed in processing of any operation. The objective is to minimize
the makespan (the schedule length). Extending the standard three-field notation
scheme introduced by Graham et al. [6] we denote the single machine problem
by 1 | exact lj | Cmax and the two-machine problem by F2 | exact lj | Cmax.

The problems with exact delays arise in command-and-control applications in
which a centralized commander distributes a set of orders (associated with the
first operations) and must wait to receive responses (corresponding to the second

� Research supported by the Russian Foundation for Basic Research, projects 05-01-
00960, 06-01-00255.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 1–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 A.A. Ageev and A.V. Kononov

operations) that do not conflict with any other (for more extensive discussion
on the subject, see [4,8]). Research papers on problem 1 | exact lj | Cmax are
mainly motivated by applications in pulsed radar systems, where the machine is a
multifunctional radar whose purpose is to simultaneously track various targets by
emitting a pulse and receiving its reflection some time later [2,5,7,4,8]. Coupled-
task scheduling problems with exact delays also arise in chemistry manufacturing
where there often may be an exact technological delay between the completion
time of some operation and the initial time of the next operation.

1.1 Related Work

Farina and Neri [2] present a greedy heuristic for a special case of problem
1 | exact lj | Cmax. Izquierdo-Fuente and Casar-Corredera [5] develop a Hopfield
neural network for the problem. Elshafei et al. [4] present a Lagrange relax-
ation algorithm based on a discretization of the time horizon. Orman and Potts
[7] establish that the problem is strongly NP-hard even in some special cases.
In particular, they prove it for 1 | exact lj , aj = bj = lj | Cmax. Yu [9], [10]
proves that the two machine problem F2 | exact lj | Cmax is strongly NP-hard
even in the case of unit processing times, which implies that the single machine
problem is strongly NP-hard in the case of unit processing times as well (see
[10]). Ageev and Baburin [1] present non-trivial constant-factor approximation
algorithms for both the single and two machine problems under the assump-
tion of unit processing times. More specifically, in [1] it is shown that problem
1 | exact lj , aj = bj = 1 | Cmax is approximable within a factor of 7/4 and
problem F2 | exact lj aj = bj = 1 | Cmax, within a factor of 3/2.

1.2 Our Results

In this paper we present first constant-factor approximation algorithms for the
general cases of 1 | exact lj | Cmax and F2 | exact lj | Cmax. We construct
a 3.5-approximation algorithm for solving the single machine problem and 3-
approximation algorithms for its special cases when aj ≤ bj, or aj ≥ bj for all
j ∈ J . We also show that the latter algorithms provide a 2.5-approximation
for the case when aj = bj for all j ∈ J . Moreover, we prove that problem
1 | exact lj | Cmax is not (2 − ε)-approximable unless P=NP even in the case
of aj = bj for all j ∈ J . Addressing problem F2 | exact lj | Cmax we present a
3-approximation algorithm for the general case and show that it provides a 2-
approximation for the cases when aj ≤ bj, or aj ≥ bj for all j ∈ J . Furthermore,
we prove that the problem is not (1.5 − ε)-approximable unless P=NP even in
the case of aj = bj for all j ∈ J . All designed algorithms can be implemented
in O(n log n) time. The inapproximability results show that the approximation
ratios achieved by our algorithms in the cases when aj = bj for all j ∈ J are
very close to best possible: the single machine problem is approximable within
a factor of 2.5 and not approximable within a factor of (2− ε); the two machine
problem is approximable within a factor of 2 and not approximable within a
factor of (1.5− ε). Approximability results established to date for the problems
are summarized in Table 1.

Approximation Algorithms for Scheduling Problems with Exact Delays 3

Table 1. A summary of the approximability results

problem appr. factor inappr. bound ref.

1 | exact lj , | Cmax 3.5 2 − ε this paper

1 | exact lj , aj ≤ bj | Cmax 3 2 − ε this paper

1 | exact lj , aj ≥ bj | Cmax 3 2 − ε this paper

1 | exact lj , aj = bj | Cmax 2.5 2 − ε this paper

1 | exact lj , aj = bj = 1 | Cmax 1.75 [1]

F2 | exact lj | Cmax 3 1.5 − ε this paper

F2 | exact lj , aj ≤ bj | Cmax 2 1.5 − ε this paper

F2 | exact lj , aj ≥ bj | Cmax 2 1.5 − ε this paper

F2 | exact lj , aj = bj = 1 | Cmax 1.5 [1]

1.3 Basic Notation

For both problems an instance will be represented as a collection of triples
{(aj , lj, bj) : j ∈ J} where J = {1, . . . , n} is the set of jobs, aj and bj are
the lengths of the first and the second operations of job j, respectively and lj
is the given delay between these operations. As usual, we assume that all input
numbers are nonnegative integers. For a schedule σ and any j ∈ J , denote by
σ(j) the starting time of the first operation of job j. As the starting times of the
first operations uniquely determine the starting times of the second operations,
any feasible schedule is uniquely specified by the collection of starting times of
the first operations {σ(1), . . . , σ(n)}. For a schedule σ and any j ∈ J , denote by
Cj(σ) the completion time of job j in σ; note that Cj(σ) = σ(j) + lj + aj + bj
for all j ∈ J . The length of a schedule σ is denoted by Cmax(σ) and thus
Cmax(σ) = maxj∈J Cj(σ). The length of a shortest schedule is denoted by C∗

max.
The remainder of the paper is organized as follows. In Section 2 and 3 we

describe and analyze the algorithms for the single machine and two-machine
problems, respectively. Section 4 contains the inapproximability results.

2 Algorithms for the Single Machine Problem

In this section we describe and analyze approximation algorithms for the general
and some special cases of the single machine problem.

2.1 Algorithms for Special Cases

We begin with presenting algorithm 1M≤ for the case when aj ≤ bj for all j ∈ J .
Informally, the algorithm sorts the jobs in nonincreasing order of delays and

then successively constructs segments of the output schedule, which we call blocks.
An s-th block is the maximum possible subsequence of jobs {js, . . . , js+1−1} that
admits a feasible schedule in which the machine continuously processes the second
operations of j1, . . . , js+1−1. The performance analysis is based on the remarkable
observation that the total idle time within each block except the first one can be
evaluated via the processing times of the previously scheduled jobs.

4 A.A. Ageev and A.V. Kononov

Algorithm 1M≤.

Phase I (jobs ordering). Number the jobs in the following way:

a1 + l1 ≥ a2 + l2 ≥ . . . ≥ an + ln . (1)

Phase II (constructing indices js). By examining the set of jobs in the order
j = 1, . . . , n compute the indices j1 < j2 < . . . < jr ≤ n in the following way.

Step 1. Set j1 = 1. If
∑t−1

s=1 bs ≤ lt for all t = 2, . . . , n, then set r = 1, otherwise
go to Step 2.

Step k(k ≥ 2). Set jk to be equal to the minimum index among indices t > jk−1

such that
∑t−1

s=jk−1
bs > lt. If jk = n or

∑t−1
s=jk

bs ≤ lt for all t = jk + 1, . . . , n,
then set r = k, otherwise go to Step k + 1.

Phase III (constructing the schedule). Set σ(j1) = σ(1) = 0. If r > 1, then
for s = 2, . . . , r set

σ(js) = σ(js−1) + ajs−1 + ljs−1 +
js−1∑

k=js−1

bk . (2)

For every j ∈ J \ {j1, . . . , jr}, set

σ(j) = σ(js) + ajs + ljs − aj − lj +
j−1∑
k=js

bk (3)

where s is the maximum index such that js < j.

Example. Consider the following instance of problem 1 | exact lj, aj ≤ bj | Cmax

(the jobs are ordered according to Phase I):

{(1, 6, 2), (2, 4, 3), (1, 5, 4), (1, 3, 2), (1, 3, 1), (1, 2, 3)}.

Phase II finds that i1 = 1, i2 = 4, i3 = 6, i. e., we have three blocks: B1 =
{1, 2, 3}, B2 = {4, 5}, B3 = {6}. Finally, Phase III computes the schedule σ:
σ(1) = 0, σ(2) = 3, σ(3) = 6, σ(4) = 16, σ(5) = 18, σ(6) = 23 (see Fig. 1).

Correctness and running time. For convenience, set jr+1 = n + 1. Note
that the set of jobs J splits into r disjoint subsets Bs = {js, . . . , js+1 − 1},
s = 1, . . . , r (we will further refer to them as blocks). The following lemma shows
that algorithm 1M≤ constructs a feasible schedule and describes its structure.

Lemma 1. Let 1 ≤ s ≤ r.

(i) For any two jobs j′, j′′ ∈ Bs such that j′ < j′′, σ(j′′) ≥ σ(j′) + aj′ .
(ii) For any job j ∈ Bs, the first operation of j completes before starting the

second operation of job js.
(iii) The completion time of job js+1 − 1 coincides with the starting time of the

first operation of job js+1.

Approximation Algorithms for Scheduling Problems with Exact Delays 5

1 2 1 23 3 4 45 5 6 6

t=0 t

Fig. 1. The schedule constructed by algorithm 1M≤

(iv) Within the time interval

[σ(js), σ(js) + ajs
+ ljs

+
js+1−1∑
k=js

bk]

the machine executes both operations of each job in Bs and only these
operations.

(v) Within the time interval [σ(js), σ(js) + a
js

+ l
js

] the machine processes the
first operations of all jobs in Bs in the order js, . . . , js+1−1 and only these
operations (with possible idle times).

(vi) Within the time interval

[σ(js) + a
js

+ l
js
, σ(js) + a

js
+ l

js
+

js+1−1∑
k=js

bk]

the machine without idle times processes the second operations of all jobs
in Bs in the order js, . . . , js+1 − 1.

Proof. First observe that (i), (iii), and (vi) imply (iv); (i), (ii), (iii) yield (v) as
well.

Now let j′, j′′ ∈ Bs and j′′ > j′. By (3) we obtain that

σ(j′′)− σ(j′) = σ(js) + ajs + ljs − aj′′ − lj′′ +
j′′−1∑
k=js

bk

−
(
σ(js) + ajs + ljs − aj′ − lj′ +

j′−1∑
k=js

bk

)

= aj′ + lj′ − aj′′ − lj′′ +
j′′−1∑
k=j′

bk . (4)

By using bj′ ≥ aj′ , (4), and (1) we obtain

σ(j′′)− σ(j′)− aj′ ≥ bj′ + lj′ − aj′′ − lj′′ ≥ aj′ + lj′ − aj′′ − lj′′ ≥ 0 ,

which proves (i). Let j ∈ Bs. Then by the construction of js,
∑j−1

k=js
bk ≤ lj . By

(3) it follows that

σ(j) + aj = σ(js) + ajs + ljs − lj +
j−1∑
k=js

bk ≤ σ(js) + ajs + ljs ,

6 A.A. Ageev and A.V. Kononov

which yields (ii). Next we have

Cjs+1−1(σ) = σ(js+1 − 1) + ajs+1−1 + ljs+1−1 + bjs+1−1

(by (3) = σ(js) + a
js

+ l
js
− ajs+1−1 − ljs+1−1

+
js+1−2∑
k=js

bk + ajs+1−1 + ljs+1−1 + bjs+1−1

= σ(js) + a
js

+ l
js

+
js+1−1∑
k=js

bk

(by (2)) = σ(js+1) ,

which establishes (iii). By (4) we have that

σ(j′′) + aj′′ + lj′′ = σ(j′) + aj′ + lj′ +
j′′−1∑
k=j′

bk ≥ σ(j′) + aj′ + lj′ + bj′ , (5)

which means that the second operation of job j′′ starts after the completion of job
j′. Moreover, if j′′ = j′ + 1, then the inequality in (5) holds with equality, which
means that the second operation of job j′′ starts exactly after the completion of
job j′ and thereby (vi) is verified. ��

It is easy to see that the most time consuming part of the algorithm is the sorting
on Phase I and so its running time is O(n log n).

Approximation ratio. First, note that C∗
max is at least the load of the machine

and the maximum length of a job, i. e.,

C∗
max ≥ max{

n∑
j=1

(aj + bj),max
j∈J

(aj + bj + lj)} . (6)

For s = 1, . . . , r, set Hs = a
js

+ l
js

+
∑js+1−1

k=js
bk. By (iv) and (vi) of Lemma 1

Cmax(σ) =
r∑

s=1

Hs =
r∑

s=1

(a
js

+ l
js

) +
n∑

j=1

bj . (7)

Recall that by the construction of js for each s ≥ 2,
∑js−1

k=js−1
bk > ljs . Hence (7)

implies that

Cmax(σ) ≤
r∑

s=1

a
js

+ l1 +
r∑

s=2

js−1∑
k=js−1

bk +
n∑

j=1

bj

≤
(r∑

s=1

a
js

+
n∑

j=1

bj

)
+

n∑
j=1

bj + l1 . (8)

Approximation Algorithms for Scheduling Problems with Exact Delays 7

Thus by (6) for the case when aj ≤ bj for all j ∈ J , we have Cmax(σ) ≤ 3 ·C∗
max.

In the case when aj = bj for all j ∈ J , (6) implies that
∑n

j=1 bj ≤ 1
2C

∗
max,

which together with (8) yields Cmax(σ) ≤ 5
2 · C∗

max. Summing up we obtain the
following

Theorem 1

(i) Algorithm 1M≤ finds a schedule of length at most thrice the length of a
shortest schedule.

(ii) When applied to problem 1 | exact lj , aj = bj | Cmax algorithm 1M≤ finds
a schedule of length at most 2.5 times the length of a shortest schedule. ��

Observe that problem 1 | exact lj , aj ≥ bj | Cmax reduces to problem 1 | exact lj ,
aj ≤ bj | Cmax by the standard inverse of the time axis. Thus 1 | exact lj , aj ≥
bj | Cmax can be solved within a factor of 3 of the length of an optimal schedule
as well.

2.2 Algorithm for the General Case

Let I = {(aj , lj , bj) : j ∈ J} be an instance of 1 | exact lj | Cmax.

Algorithm 1M.

1. If
∑n

j=1 aj >
∑n

j=1 bj , replace I = {(aj , lj, bj) : j ∈ J} by the symmetrical
instance {(bj , lj, aj) : j ∈ J} (which is equivalent to the inverse of the time
axis).

2. Form the new instance I∗ = {(aj, lj , bj) : j ∈ J} where bj = max{aj , bj}
(note that I∗ is an instance of 1 | exact lj , aj ≤ bj | Cmax.)

3. By applying Algorithm 1M≤ to I∗ find a schedule σ.
4. If

∑n
j=1 aj ≤

∑n
j=1 bj output σ; otherwise output the inverse of σ.

Running time. It is clear that the running time of Algorithm 1M is of the same
order as that of Algorithm 1M≤, i. e., the algorithm runs in time O(n logn).

Approximation ratio. Clearly, we may assume that
n∑

j=1

aj ≤
n∑

j=1

bj . (9)

By (8) and the construction of bj , we have

Cmax(σ) ≤
(r∑

s=1

ajs
+

n∑
j=1

bj

)
+

n∑
j=1

bj + l1

=
(r∑

s=1

ajs
+

n∑
j=1

max{aj, bj}
)

+
n∑

j=1

max{aj, bj}+ l1

≤
r∑

s=1

a
js

+ 2
n∑

j=1

(aj + bj) + l1 .

8 A.A. Ageev and A.V. Kononov

Since by (9),
∑r

s=1 ajs
≤
∑n

j=1 aj ≤ 1
2

∑n
j=1(aj + bj), it follows that

Cmax(σ) ≤ 5
2

n∑
j=1

(aj + bj) + l1

(by (6)) ≤ 7
2
C∗

max .

Thus we arrive at the following

Theorem 2. Algorithm 1M finds a schedule of length at most 3.5 times the
length of a shortest schedule. ��

Tightness. We now present an example demonstrating that the approximation
bound established for Algorithm 1M ≤ cannot be improved on with respect to
the lower bound (6). Let x be a positive integer and k = 2x − 1. Consider the
instance of problem 1 | exact lj , aj ≤ bj | Cmax consisting of one job (1, k(x +
1), x) and k identical jobs (1, x − 1, x). So we have n = k + 1. It is easy to see
that algorithm 1M≤ outputs a schedule σ consisting of n blocks and thus

Cmax(σ) = 1 + k(x+ 1) + x+ k(1 + x− 1 + x) = 3kx+ k + 1 + x = 3kx+ 3x .

On the other hand, the lower bound (6) is

LB = max{1 + x+ k + kx, 1 + x+ k(x+ 1)} = (k + 1)(x+ 1) .

Thus
Cmax(σ)
LB

=
3kx+ 3x

(k + 1)(x+ 1)
=

3(2x− 1)x+ 3x
2x(x+ 1)

=
6x2

2x2 + 2x
,

which tends to 3 as x→∞.
A similar construction shows that an approximation factor of 2.5 is tight with

respect to the lower bound (6) for the case when aj = bj for all j ∈ J .

3 Algorithm for the Two-Machine Problem

In the section we present a constant-factor approximation algorithm for the two-
machine problem. We analyze its performance in general and some special cases
of the problem. Theorem 5 shows that the approximation ratio of this rather
simple algorithm is surprisingly close to best possible.

Algorithm 2M.

Phase I (jobs ordering). Number the jobs in the following way:

a1 + l1 ≤ a2 + l2 ≤ . . . ≤ an + ln . (10)

Phase II (constructing the schedule). Set σ(1) = 0. For j = 2, . . . , n, set

σ(j) = max{σ(j − 1) + aj−1, σ(j − 1) + bj−1 + aj−1 + lj−1 − aj − lj} . (11)

Approximation Algorithms for Scheduling Problems with Exact Delays 9

Example. Consider the following instance of problem F2 | exact lj | Cmax (the
jobs are ordered according to Phase I):

{(1, 2, 3), (3, 1, 1), (1, 3, 4), (2, 3, 2)} .

Phase II computes the schedule σ with σ(1) = 0, σ(2) = 2, σ(3) = 5, σ(4) = 8
(see Fig. 2).

1

1

2

2

3

3

4

4

tt=0

Fig. 2. The schedule constructed by algorithm 2M

Correctness and running time. By (11) for any j = 2, . . . , n, σ(j) ≥ σ(j −
1) + aj−1, which guarantees that the first operations of different jobs do not
overlap. Moreover, by (11) for any j = 2, . . . , n,

Cj(σ)− bj = σ(j) + aj + lj ≥ σ(j − 1) + aj−1 + bj−1 + lj−1 = Cj−1(σ) , (12)

which means that the second operation of job j starts after the completion of
the second operation of the previous job j−1, j = 2, . . . , n. Therefore the second
operations of different jobs do not overlap as well. Thus σ is a feasible schedule.

It is clear that the algorithm can be implemented in O(n log n) time.

Approximation ratio

Theorem 3

(i) Algorithm 2M finds a schedule of length at most thrice the length of a
shortest schedule.

(ii) When applied to the special cases where aj ≤ bj, or aj ≥ bj for all j ∈ J ,
algorithm 2M finds a schedule of length at most twice the length of a shortest
schedule.

Proof. Observe that C∗
max is at least the maximum load of machines and the

maximum job length, i. e.,

C∗
max ≥ max{max

j∈J
(aj + bj + lj),

∑
j∈J

aj ,
∑
j∈J

bj} . (13)

By (12) job n is the last job processed on machine 2, which means that the
length of σ coincides with the completion time of this job, i. e.,

Cmax(σ) = σ(n) + an + bn + ln . (14)

10 A.A. Ageev and A.V. Kononov

Since σ(1) = 0, we have

σ(n) =
n∑

j=2

(
σ(j)− σ(j − 1)

)
. (15)

By (10) and (11), for j = 2, . . . , n,

σ(j) ≤ max{σ(j − 1) + aj−1, σ(j − 1) + bj−1}
= σ(j − 1) + max{aj−1, bj−1} .

By (15), it follows that σ(n) ≤
∑n

j=2 max{aj−1, bj−1} and by (14),

Cmax(σ) ≤
n∑

j=2

max{aj−1, bj−1}+ an + bn + ln . (16)

By (13) it follows that in the case of arbitrary aj and bj, Cmax(σ) ≤ 3C∗
max and

in the case when aj ≥ bj or bj ≥ aj for all j ∈ J , Cmax(σ) ≤ 2C∗
max. ��

Tightness. As above we present an example validating that an approximation
factor of 3 cannot be improved on with respect to the lower bound (13). Let k
be a positive integer. Consider the instance of F2 | exact lj | Cmax consisting of
k+1 identical jobs (1, k2, k) and k identical jobs (k, k2− k+1, 1), i. e., the total
number of jobs n = 2k+ 1. As aj + lj = 1 + k2 for all j ∈ J , Phase I may index
the jobs in the following alternating order:

(1, k2, k), (k, k2 − k + 1, 1), (1, k2, k), (k, k2 − k + 1, 1), . . . , (1, k2, k) .

It is easy to see that using this order Phase II computes the schedule σ with
σ(2s + 1) = 2ks and σ(2s) = k + 2ks for s = 1, . . . , k (the case of k = 3 is
depicted in Fig. 3). Therefore the completion time of the last operation on the
first machine is 2k2 + 1 and so

Cmax(σ) = 2k2 + 1 + k2 + k = 3k2 + k + 1 .

On the other hand, the lower bound LB = k2 + 2k. Thus

Cmax(σ)
LB

=
3k2 + k + 1
k2 + 2k

,

which tends to 3 as k →∞.
The tightness of an approximation factor of 2 for the case of aj = bj for all

j ∈ J is an easy exercise.

4 Inapproximability Lower Bounds

In this section we establish inapproximability lower bounds for both problems.
To this end we construct specific polynomial-time reductions from the following
well-known NP-complete problem [3]:

Approximation Algorithms for Scheduling Problems with Exact Delays 11

1

1

2

2

3

3

4

4

5

5

6

6

7

7

t=0 t

Fig. 3. The case of k = 3

Partition

Instance: Nonnegative numbers w1, . . . , wm.

Question: Does there exist a subset X ⊆ {1, . . . ,m} such that
∑

k∈X wk = S
where S = 1

2

∑m
k=1 wk?

4.1 Problem 1 | exact lj, aj = bj | Cmax

Let I be an instance of Partition. Define an instance I∗ = {(aj, lj , bj) : j ∈ J}
of problem 1 | exact lj , aj = bj | Cmax. Let J = {1, . . . ,m+ 3} and

aj = bj = wj , lj = (2q + 3)S − wj for j = 1, . . . ,m ,

aj = bj = S, lj = (2q + 4)S for j = m+ 1,m+ 2 ,

am+3 = bm+3 = qS, lm+3 = 0

where q is a positive integer.

Lemma 2

(i) If
∑

k∈X wk = S for some subset X ⊆ {1, . . . ,m}, then C∗
max = (2q + 8)S.

(ii) If
∑

k∈X wk
= S for all X ⊆ {1, . . . ,m}, then C∗
max ≥ (4q + 3)S.

Proof.
(i). First, observe that since (2q+8)S is the load of the machine, C∗

max ≥ (2q+
8)S. Now we present a schedule σ with Cmax(σ) = (2q+ 8)S. Set σ(m+ 1) = 0,
σ(m+2) = 2S, σ(m+3) = 4S, and in an arbitrary order put the first operations
of j ∈ X within the interval [S, 2S] and the first operations of j ∈ {1, . . . ,m}\X
within the interval [3S, 4S] (see Fig. 4). Then the second operations of jobs in
X and in {1, . . . ,m} \X will be processed in the same order within the vacant
time intervals [2qS + 4S, 2qS + 5S] and [2qS + 6S, 2qS + 7S], respectively (see
Fig. 4). Thus Cmax(σ) = (2q + 8)S, as required.

m+1 m+2 m+1 m+2m+3 m+3

t=0 t

Fig. 4. The jobs in {1, . . . , m} are executed within the shaded intervals

(ii). Assume to the contrary that Cmax(σ) < (4q + 3)S for some feasible
schedule σ of I∗. We first claim that both operations of job m+ 3 are processed

12 A.A. Ageev and A.V. Kononov

between the first and second operations of each of the remaining jobs. Indeed, if
job m+3 is not processed between the operations of some job in {m+1,m+2},
then

Cmax(σ) ≥ 2qS + (2q + 4)S = 4qS + 4S

and if jobm+3 is not processed between the operations of some job in {1, . . . ,m},
then

Cmax(σ) ≥ 2qS + (2q + 3)S = 4qS + 3S .

Since the jobs m+ 1 and m+ 2 are identical, we may assume that σ(m + 1) <
σ(m+ 2) < σ(m+ 3). Then by the claim and the construction of I∗,

σ(m+ 3) < Cm+3(σ) < Cm+1(σ) < Cm+2(σ) .

Since the first operations of all jobs in {1, . . . ,m+ 2} are processed before time
σ(m+ 3),

σ(m+ 3) ≥ 4S . (17)

By the above claim, σ(j) < σ(m+3) < Cm+3(σ) < Cj(σ) for all j ∈ {1, . . . ,m}.
Assume that the first executable job is j ∈ {1, . . . ,m}. Hence 0 = σ(j) ≤
σ(m+ 1). Then by the definition of job j,

Cm+3(σ) ≤ Cj(σ)− wj = σ(j) + 2wj + 2qS + 3S − 2wj = 2qS + 3S .

Since Cm+3(σ) = σ(m + 3) + 2qS, it follows that σ(m + 3) ≤ 3S, contradicting
the fact that the first operations of all jobs in {1, . . . ,m+2} are processed before
time σ(m + 3). Thus m + 1 is the first executable job, i. e., σ(m + 1) = 0. By
a similar way it can be shown (this also follows from the time axis symmetry)
that job m+2 is the last executable job. It follows that the second operations of
all jobs in {1, . . . ,m} are processed within the interval [Cm+3(σ), Cm+2(σ)− S]
and thus we have

Cm+2(σ)− Cm+3(σ) ≥ 4S . (18)

Let T ′ = [σ(m + 3) − 3S, σ(m + 3)], T ′′ = [Cm+3(σ), Cm+3(σ) + 3S]. Then by
the construction of I∗, for any j ∈ {1, . . . ,m}, σ(j) ∈ T ′ and Cj(σ) ∈ T ′′. Next,
by (17) we have that

Cm+3(σ) = σ(m + 3) + 2qS ≥ 2qS + 4S .

On the other hand, (18) implies that

σ(m+ 3) ≤ σ(m+ 2) + 2S . (19)

Thus the first operation of job m+ 2 is processed within interval T ′ while (17)
implies that the second operation of job m + 1 is processed within interval T ′′.
Therefore we may define the following subintervals of T ′ and T ′′:

T1 = [σ(m+ 3)− 3S, σ(m+ 2)] ,
T2 = [σ(m+ 2) + S, σ(m+ 3)] ,
T3 = [Cm+3(σ), Cm+1(σ)− S] ,
T4 = [Cm+1(σ), Cm+3(σ) + 3S] .

Approximation Algorithms for Scheduling Problems with Exact Delays 13

As |T1| + |T2| = |T3| + |T4| = 2S and the operations of all jobs in {1, . . . ,m}
are processed within

⋃4
k=1 Tk, we have that

∑
j:σj∈Tk

wj = |Tk| for k = 1, 2, 3, 4,
where |Tk| stands for the length of Tk. In particular, it follows that within interval
T1 the machine without idle times executes the first operations of some jobs in
{1, . . . ,m}. Then the second operations of these jobs are executed within interval
[Cm+3(σ), Cm+3(σ)+ |T1|], which therefore cannot contain the second operation
of job m+ 1. This implies that

Cm+3(σ) + |T1| = Cm+3(σ)− σ(m+ 3) + 3S + σ(m+ 2)
= 2qS + 3S + σ(m+ 2)
≤ Cm+1(σ)− S
= 2qS + 6S − S = 2qS + 5S

or, equivalently, σ(m + 2) ≤ 2S. By (19) it follows that σ(m + 3) ≤ 4S, which
together with (17) yields σ(m+ 3) = 4S. Then

|T3| = Cm+1(σ)− S − Cm+3(σ) = 2qS + 6S − S − 4S − 2qS = S

and thus
∑

j:Cj(σ)∈T3
wj = |T3| = S, which contradicts the assumption of (ii).

��

The following is a straightforward corollary of the lemma.

Theorem 4. The existence of a (2 − ε)-approximation algorithm for problem
1 | exact lj , aj = bj | Cmax implies P=NP. ��

4.2 Problem F2 | exact lj, aj = bj | Cmax

Let I be an instance of Partition. Define an instance I∗ = {(aj, lj , bj) : j ∈ J}
of F2 | exact lj , aj = bj | Cmax in the same way as in the above subsection, i.
e., set J = {1, . . . ,m+ 3} and

aj = bj = wj , lj = (2q + 3)S − wj for j = 1, . . . ,m ,

aj = bj = S, lj = (2q + 4)S for j = m+ 1,m+ 2 ,

am+3 = bm+3 = qS, lm+3 = 0

where q is a positive integer. The proof of the next lemma is quite similar to
that of Lemma 2.

Lemma 3

(i) If
∑

k∈X wk = S for some subset X ⊂ {1, . . . ,m}, then C∗
max ≤ (2q + 8)S

(a schedule of length (2q + 8)S is depicted in Fig. 5).
(ii) If

∑
k∈X wk
= S for all X ⊂ {1, . . . ,m}, then C∗

max ≥ (3q + 3)S. ��

14 A.A. Ageev and A.V. Kononov

m+1 m+2

m+1 m+2

m+3

m+3

t
t=0

Fig. 5. The jobs in {1, . . . , m} are executed within the shaded intervals

As above we arrive at the following corollary:

Theorem 5. The existence of a (1.5− ε)-approximation algorithm for problem
F2 | exact lj, aj = bj | Cmax implies P=NP. ��

References

1. A. A. Ageev and A. E. Baburin, Approximation Algorithms for the Single and
Two-Machine Scheduling Problems with Exact Delays, to appear in Operations
Research Letters.

2. A. Farina and P. Neri, Multitarget interleaved tracking for phased array radar,
IEEE Proc. Part F: Comm. Radar Signal Process. 127 (1980) (4), 312–318.

3. M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness, Freeman, San Francisco, CA, 1979.

4. M. Elshafei, H. D. Sherali, and J.C. Smith, Radar pulse interleaving for multi-target
tracking, Naval Res. Logist. 51 (2004), 79–94.

5. A. Izquierdo-Fuente and J. R. Casar-Corredera, Optimal radar pulse scheduling
using neural networks, in: IEEE International Conference on Neural Networks,
vol. 7, 1994, 4588-4591.

6. R. L.Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics 5 (1979), 287-326.

7. A. J. Orman and C. N. Potts, On the complexity of coupled-task scheduling, Dis-
crete Appl. Math. 72 (1997), 141–154.

8. H. D. Sherali and J. C. Smith, Interleaving two-phased jobs on a single machine,
Discrete Optimization 2 (2005), 348–361.

9. W. Yu, The two-machine shop problem with delays and the one-machine total
tardiness problem, Ph.D. thesis, Technische Universiteit Eindhoven, 1996.

10. W. Yu, H. Hoogeveen, and J. K. Lenstra, Minimizing makespan in a two-machine
flow shop with delays and unit-time operations is NP-hard. J. Sched. 7 (2004), no.
5, 333–348.

Bidding to the Top: VCG and Equilibria of

Position-Based Auctions

Gagan Aggarwal, Jon Feldman, and S. Muthukrishnan

Google, Inc.
76 Ninth Avenue, 4th Floor, New York, NY, 10011

1600 Amphitheatre Pkwy, Mountain View, CA, 94043
{gagana,jonfeld,muthu}@google.com

Abstract. Many popular search engines run an auction to determine
the placement of advertisements next to search results. Current auctions
at Google and Yahoo! let advertisers specify a single amount as their
bid in the auction. This bid is interpreted as the maximum amount the
advertiser is willing to pay per click on its ad. When search queries arrive,
the bids are used to rank the ads linearly on the search result page.
Advertisers seek to be high on the list, as this attracts more attention
and more clicks. The advertisers pay for each user who clicks on their
ad, and the amount charged depends on the bids of all the advertisers
participating in the auction.

We study the problem of ranking ads and associated pricing mech-
anisms when the advertisers not only specify a bid, but additionally
express their preference for positions in the list of ads. In particular, we
study prefix position auctions where advertiser i can specify that she is
interested only in the top κi positions.

We present a simple allocation and pricing mechanism that general-
izes the desirable properties of current auctions that do not have position
constraints. In addition, we show that our auction has an envy-free [1]
or symmetric [2] Nash equilibrium with the same outcome in allocation
and pricing as the well-known truthful Vickrey-Clarke-Groves (VCG)
auction. Furthermore, we show that this equilibrium is the best such
equilibrium for the advertisers in terms of the profit made by each ad-
vertiser. We also discuss other position-based auctions.

1 Introduction

In the sponsored search market on the web, advertisers bid on keywords that
their target audience might be using in search queries. When a search query is
made, an online (near-real time!) auction is conducted among those advertisers
with matching keywords, and the outcome determines where the ads are placed
and how much the advertisers pay. We will first review the existing auction
model before describing the new model we study (a description can be found in
Chapter 6 of [3]).

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 15–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

16 G. Aggarwal, J. Feldman, and S. Muthukrishnan

Current Auctions. Consider a specific query consisting of one or more keywords.
When a user issues that search query, the search engine not only displays the
results of the web search, but also a set of “sponsored links.” In the case of
Google, Yahoo, and MSN, these ads appear on a portion of the page near the
right border, and are linearly ordered in a series of slots from top to bottom.
(On Ask.com, they are ordered linearly on the top and bottom of the page).

Formally, for each search query, we have a set of n advertisers interested
in advertising. This set is usually derived by taking a union over the sets of
advertisers interested in the individual keywords that form the query. Advertiser
i bids bi, which is the maximum amount the advertiser is willing to pay for a
click. There are k < n positions available for advertisements. When a query for
that keyword occurs, an online auction determines the set of advertisements,
their placement in the positions, and the price per click each has to pay.

The most common auction mechanism in use today is the generalized second-
price (GSP) auction (sometimes also referred to as the next-price auction). Here
the ads are ranked in decreasing order of bid, and priced according to the bid of
the next advertiser in the ranking. In other words, suppose wlog that b1 ≥ b2 ≥
. . . ≥ bn; then the first k ads are placed in the k positions, and for all i ∈ [1, k],
bidder i gets placed in position i and pays bi+1 per click.1

We note two properties ensured by this mechanism:

1. (Ordering Property) The ads that appear on the page are ranked in decreas-
ing order of bi.

2. (Minimum Pay Property) If a user clicks on the ad at position i, the adver-
tiser pays the minimum amount she would have needed to bid in order to be
assigned the position she occupies.

Search engine companies have made a highly successful business out of these
auctions. In part, the properties above have dissuaded advertisers from trying
to game the auction. In particular, the minimum-pay property ensures that an
advertiser has no incentive to lower a winning bid by a small amount in order
to pay a lower price for the same position. Still, the GSP auction is not truth-
revealing, that is, an advertiser may be incentivized to bid differently than her
true value under certain conditions [4].

Only recently have we obtained a detailed formal understanding of the prop-
erties of this auction. Authors in [1,2,4] have analyzed the auction in terms
of its equilibria. They show that when the click-through rates are separable,
i.e. the click-through rate of an ad at a given position is the product of an
ad-specific factor and a position-specific factor, the GSP has a Nash equilib-
rium whose outcome is equivalent to the famous Vickrey-Clarke-Groves (VCG)
mechanism [5,6,7] which is known to be truthful. [1,2] go on to show that this
equilibrium is envy-free, that is, each advertiser prefers the current outcome
(as it applies to her) to being placed in another position and paying the price-
per-click being paid by the current occupant of the position. Further, among
1 The Google auction actually ranks according to wibi, for some weight wi related to

the quality of the ad, and then sets the price for bidder i to wi+1bi+1/wi. All our
results generalize to this “weighted” bid case as well.

Bidding to the Top: VCG and Equilibria of Position-Based Auctions 17

all the envy-free equilibria, the VCG equilibrium is bidder-optimal; that is, for
each advertiser, her price-per-click is minimum under this equilibrium. We note
that when the click-through rates are separable, the outcome produced by the
VCG mechanism has the ordering property. Authors in [4] also show that even
when the click-through rates are arbitrary, there is a pricing method with the
ordering property that is truthful. (This pricing method reduces to the VCG
pricing method when the click-through rates are separable.) Furthermore, they
show that the GSP has a Nash equilibrium that has the same outcome as their
mechanism. Together, these results provide some understanding of the current
auctions. That in turn provides confidence in the rules of the auction, and helps
support the vast market for search keyword advertising.

Emerging Position-Based Auctions. As this market matures, advertisers are be-
coming increasingly sophisticated. For example they are interested in the relative
performance of their ads and keywords, and so the search engines provide tools
to track statistics. As advertisers learn when and where their ads are most ef-
fective, they need more control over their campaigns than is provided by simply
stating a keyword and a bid.

One of the most important parameters affecting the performance of an adver-
tisement is its position on the page. Indeed, the reason the auction places the
ads in descending order on the page is that the higher ads tend to get clicked
on more often than the lower ones. In fact, having an ad place higher on the
page not only increases the chances of a click, it also has value as a branding
tool, regardless of whether the ad gets clicked. Indeed, a recent empirical study
by the Interactive Advertising Bureau and Nielsen//NetRatings concluded that
higher ad positions in paid search have a significant brand awareness effect [8].
Because of this, advertisers would like direct control over the position of their
ad, beyond just increasing the bid. Ideally, the search engine would conduct a
more general auction that would take such position preferences into account; we
refer to this as a position-based auction.

Our Results. In this paper, we initiate the study of position-based auctions where
advertisers can impose position constraints. In particular, we study the most
relevant case of prefix position constraints, inspired by the branding advertiser:
advertiser i specifies a position κi and a bid bi, which says that the advertiser
would like to appear only in the top κi positions (or not at all) and is willing to
pay at most bi per click. Upon receiving bids from a set of n such advertisers,
the search engine must conduct an auction and place ads into k positions while
respecting the prefix constraints.

Our main results are as follows. We present a simple auction mechanism that
has both the ordering and the minimum pay property, just like the current
auctions. The mechanism is highly efficient to implement, taking near-linear
time. Further, we provide a characterization of its equilibria. We prove that this
auction has a Nash equilibrium whose outcome is equivalent in allocation and
pricing to that of VCG. Additionally, we prove that this equilibrium is envy-free
and that among all envy-free equilibria, this particular one is bidder-optimal.

18 G. Aggarwal, J. Feldman, and S. Muthukrishnan

Our results generalize those in [1,2], which proved the same thing for the GSP
without position constraints. The main difficulty in generalizing these results
lies in the fact that once you allow position constraints, the allocation function
of VCG no longer obeys the ordering property, thus making it challenging to
engineer an appropriate equilibrium. Our principal technical contributions are
new structural properties of the VCG allocation that allow us to relate the VCG
allocation with an auction that preserves the ordering property.

In the future, advertisers may want even more control over ad position. We
discuss more general position-based auctions at the end of the paper.

2 Prefix Position Auction Mechanisms

Formally, the prefix position auction problem is as follows. There are n advertis-
ers for a search keyword. They submit bids b1, . . . , bn respectively. There are k
positions for advertisements numbered 1, . . . , k, top to bottom. Each advertiser
i ∈ {1, . . . , n} also submits a cutoff position κi ≤ k, and requires that their
advertisements should not appear below position κi.

An auction mechanism consists of two functions:

– an allocation function that maps bids to a matching of advertisers to posi-
tions, as well as

– a pricing function that assigns a price per click ppcj to each position won
by an advertiser. We restrict our attention to mechanisms where the prices
always respect the bids; i.e., we have ppcj ≤ bi if i is assigned to j.

A natural allocation strategy that retains the ordering property is as follows:
rank the advertisers in decreasing order of bi as in GSP. Now, go through the
ranking one position at a time, starting at the top; if you encounter an advertiser
that appears below her bottom position κi, remove her from the ranking and
move everyone below that position up one position, and continue checking down
the rest of the list.

Two natural pricing strategies immediately come to mind here: (1) Set prices
according to the subsequent advertiser in the ranking before any advertiser is
removed, or (2) set prices according to the subsequent advertiser in the ranking
after all the advertisers are removed (more precisely, the ones that appear below
her position). It turns out that neither of these options achieves the minimum
pay property as shown by the following examples. Assume for the sake of these
examples that $0.05 is the amount used to charge for the last position.

Example 1. Suppose we set prices before removing out-of-position advertisers.
Now suppose we have the following ranges and bids where the number in paren-
theses is the position constraint κi:

A: (5) $5 B: (5) $4 C: (5) $3 D: (2) $2 E: (5) $1

We run the auction, and the order is (A, B, C, D, E). If we price now, the prices
are ($4, $3, $2, $1, $0.05). Bidder D gets removed and so we end up with (A, B, C, E),

Bidding to the Top: VCG and Equilibria of Position-Based Auctions 19

andwe charge ($4, $3, $2, $0.05).However, if bidder C had bid $1.50,which is below
what she was charged, the auction would still have ended up as (A, B, C, E). Thus,
the minimum pay property is violated by charging too much.

For a more intuitive reason why this is a bad mechanism, it would allow a
form of “ad spam”. Suppose a bidder sets her bottom cutoff to (2), but then bids
an amount that would never win position one or two. In this case, she drives up
the price for those that are later in the auction (e.g., competitors), at no risk
and no cost to herself.

Example 2. Now suppose we set the prices after removing out-of-position adver-
tisers, and we have the following bids and prefix constraints:

A: (5) $5 B: (5) $4 C: (2) $3 D: (5) $2

We run the auction, and the order is (A, B, C, D). Now we remove C and we
get the order (A, B, D). We price according to this order and so the prices are
($4, $2, $0.05). Bidder B bid $4 and paid $2; however, if B changed her bid to
$2.50, then bidder C would have gotten second position. Thus the minimum pay
property is violated, but this time because we are charging too little.

As for intuition, this option opens up a possible “race for the bottom” sit-
uation. Suppose we have a group of bidders only interested in positions 1-4
(perhaps because those appear on the page without scrolling). The winners of
the top three positions pay according to the competitive price for those top
positions, but the winner of position 4 pays according to the winner of posi-
tion 5, who could be bidding a much lower amount. Thus, these top bidders
have an incentive to lower their prices so that they can take advantage of this
bargain.

But now consider a third alternative, which will turn out to be the one that
achieves the minimum-pay property: For each advertiser that is allocated a par-
ticular position j, set the price according to the first advertiser that appears later
in the original ranking that included j in her range. For an example of this
pricing method, consider the situations from the examples above:

In Example 1, the advertisers would be ranked (A, B, C, D, E), and then (A,
B, C, E) after removal. The price for A is set to $4, since B had position 1 in its
range. Similarly, the price for B is set to $3 since C had position 2 in its range.
The price for C is set to $1, however, since D did not include position 3 in its
range. The price for C is set to $0.05.

In Example 2, the advertisers would be ranked (A, B, C, D) and after removal
we get (A, B, D). The price for A is $4, but the price for B is now $3; even though
C did not win any position, it was still a participant in the auction, and was
bidding for position 2. The price for D is $0.05.

Top-down Auction. We now define an auction mechanism for prefix position
constraints that is equivalent to the final proposal above, and is easily seen to
have the minimum-pay property. Furthermore, this mechanism is exceedingly
easy to implement, taking time O(n log n).

20 G. Aggarwal, J. Feldman, and S. Muthukrishnan

Definition 1. The top-down auction mechanism works as follows: For each po-
sition in order from the top, iteratively run a simple second-price auction (with
one winner) among those advertisers whose prefix range includes the position
being considered. By a “simple second-price auction,” we mean that the highest
bidder in the auction is allocated the position, and pays a price-per-click equal to
the second-highest bid. This winner is then removed from the pool of advertisers
for subsequent auctions and the iteration proceeds.

3 Analysis of the Top-Down Prefix Auction

We have found a natural generalization of GSP to use with prefix position con-
straints, and now we would like to know what properties this auction has. Since
GSP is a special case, we already know that the auction is not truthful [4]. But
from [2,1,4] we at least know something about the equilibria of GSP. It is natural
to ask whether or not these results hold true in our more general setting.

In this section, we answer this in the affirmative, and prove that the top-
down prefix auction has an “envy-free” Nash equilibrium whose outcome (in
terms of allocation and pricing) is equivalent to that of VCG. (“Envy-freeness”
is a stronger condition than is imposed by the Nash equilibrium, dictating
that no bidder envies the allocation and price of any other bidder.) We go
on to prove that this equilibrium is the bidder-optimal envy-free Nash equi-
librium in the sense that it maximizes the “utility” (or profit) made by each
advertiser.

Definitions. Each position j has an associated click-through rate cj > 0 which
is the probability that a user will click on an ad in that position. Using the idea
that higher positions receive more clicks, we may assume c1 > c2 > . . . > ck.
To make the discussion easier, we will abuse this notation and say that an ad in
position j “receives cj clicks,” even allowing cj > 1 for some examples.

Each advertiser has a valuation vi it places on a click, as long as that click
comes from one of its desired positions. Using the “branding” motivation, we
assume a valuation of −∞ if an ad even appears at a position below its bottom
cutoff κi. Since cj > 0 for all positions j, we can (equivalently) think of this as a
valuation of −∞ on a click below position κj . So, given some total price p (for
all the clicks) for a position j, the utility of bidder i is defined as ui = cjvi − p
if j ≤ κi, and −∞ otherwise.2

The Vickrey-Clarke-Groves (VCG) Auction. The VCG auction mechanism [5,6,7]
is a very general technique that can be applied in a wide range of settings. Here
we give its application to our problem. For a more general treatment, we refer
the reader to Chapter 23 of [9].
2 Note that we are making the assumption that click-through rates are dependent

only on the position and not on the ad itself. Our results hold as long as the click-
through rates are separable, i.e. the click-through rate of an ad at a given position is
the product of a per-position factor and a per-advertiser factor. More general forms
of click-through rate would require further investigation.

Bidding to the Top: VCG and Equilibria of Position-Based Auctions 21

Let Θ represent the allocation of bidders to positions that maximizes the to-
tal valuation on the page; i.e., Θ is a matching M of advertisers i to positions
j that respects the position constraints (j ≤ κi), and maximizes

∑
(i,j)∈M vicj .

Note that this assignment could also have empty slots, but they must be con-
tiguous at the bottom end. The Θ allocation is the most “efficient” allocation,
but an allocation function in an auction mechanism has access to the bids bi not
the valuations vi. So instead, the VCG allocation M∗ is the matching M that
maximizes

∑
(i,j)∈M bicj .

Intuitively, the VCG price for a particular bidder is the total difference in
others’ valuation caused by that bidder’s presence. To define this pricing function
formally, we need another definition: Let M∗−x be the VCG allocation that would
result if bidder x did not exist. More formally, this allocation is the matching M
that does not include bidder x and maximizes

∑
(i,j)∈M bicj .

The VCG price for bidder i in position j is then pj = M∗
−i−M∗ + cjbi. (Here

we are abusing notation and using M∗ and M∗
−i to denote the total valuation of

the allocation as well as the allocation itself.) Note that pj is a total price for all
clicks at that position, not a per-click price. Only in the case that bi = vi does
the VCG mechanism actually successfully compute Θ. However, it is well-known
(see [9] for example) that the pricing method of VCG ensures that each bidder
is incentivized to actually reveal their true valuation and set bi = vi. This holds
regardless of the actions of the other bidders, a very strong property referred
to as “dominant-strategy truthfulness.” Thus in equilibrium, we get bi = vi,
M∗ = Θ, and M∗

−i = Θ−i, where Θ−i is the Θ allocation that would result if
bidder i did not exist.

For convenience, for the remainder of paper we rename the bidders by the slots
to which they were assigned in Θ, even when we are talking about the top-down
prefix auction. The unassigned bidders are renamed to (k+1, . . . , n) arbitrarily.
We will use pi = Θ−i − Θ + civi to denote the VCG price (at equilibrium) for
position (and bidder) i.

Envy-Free Nash Equilibria and the GSP Auction. The VCG mechanism is de-
sirable because it has an equilibrium that results in the most efficient allocation
according to the true valuations of the bidders. Furthermore this equilibrium
occurs when each bidder actually reveals their true valuations. The GSP auc-
tion (without position constraints) does not have this second property, but in
fact it does have the first: namely that it has an equilibrium whose allocation
is the most efficient one (this was proved in [1,2,4]). Furthermore, this equilib-
rium also results in the same prices that result from VCG. This validates the
GSP from an incentive-compatibility point of view, and shows that the ordering
property does not preclude efficiency. This equilibrium also has the following
property:

Definition 2. An allocation and pricing is an envy-free equilibrium if each bid-
der prefers the current outcome (as it applies to her) to being placed in another
position and paying the price-per-click being paid by the current occupant of the
position.

22 G. Aggarwal, J. Feldman, and S. Muthukrishnan

Moreover, among all envy-free Nash equilibria, this particular one is bidder-
optimal, in the sense that it results in the lowest possible price for each particular
advertiser. Note that in GSP, for a particular bidder, the only position for which
envy-freeness is not implied by Nash is the position directly above.

3.1 Equilibrium in the Top-Down Auction

It is natural to ask if all these properties also hold true in the presence of posi-
tion constraints. One of the difficulties in proving this comes from the fact that
the VCG allocation no longer preserves the ordering property, as shown by the
following simple example. Suppose advertiser A has bottom cutoff (2) and a bid
of $2, advertiser B has cutoff (1) and a bid of $1, and we have c1 = 101 and
c2 = 100. The VCG allocation gives position 1 to B and position 2 to A, for
a total revenue of ≈ $300. The top-down auction will give position 1 to A and
position 2 will be unfilled. The revenue is equal to ≈ $200.

Despite this, it turns out that there is an equilibrium of the top-down auction
where bidders end up in the optimal allocation, which we prove in our main
theorem:

Theorem 1. In the top-down prefix auction, there exists a set of bids and stated
position cutoffs such that

(a) each bidder is allocated to the same slot as she would be in the dominant-
strategy equilibrium of VCG,

(b) the winner of each slot pays the same total price as she would have in the
dominant-strategy equilibrium of VCG, and

(c) the bidders are in an envy-free Nash equilibrium.

Furthermore (d), for each advertiser, her utility under VCG outcomes is the
maximum utility she can make under any envy-free equilibrium. In other words, a
VCG outcome is a bidder-optimal envy-free equilibrium of the top-down auction.

The remainder of this section is devoted to proving this theorem. The bids that
satisfy this theorem are in fact quite simple: we set bi = pi−1/ci−1 for all bidders
i assigned in Θ. Thus, if we show that b1 > b2 > . . . > bk, we would get that
the top-down auction assigns the bidders exactly like Θ and sets the same prices
(modulo some technical details). This would prove (a) and (b) above.

The chain. To show that the bids are indeed decreasing, and to show (c), it
turns out that we need to prove some technical lemmas about the difference
between Θ and Θ−i for some arbitrary bidder i. In Θ−i, some bidder i′ takes
the place of i (unless i is in the last slot, in which case perhaps no bidder takes
this slot). In turn, some bidder i′′ takes the slot vacated by i′, etc., until either
the vacated slot is the bottom slot k, or some previously unassigned bidder is
introduced into the solution. We call this sequence of bidder movements ending
at slot i the “chain” of moves of Θ−i. Note that the chain has the property that
it begins either with an unassigned bidder, or with the bidder from the last slot

Bidding to the Top: VCG and Equilibria of Position-Based Auctions 23

and ends at slot i. If we consider the slots not on the chain, we claim that (wlog)
the assignment does not change on these slots when we go from Θ to Θ−i. This
is easily seen by substituting a purported better assignment on these slots back
into Θ. Note that this implies that Θ−i has at most one new bidder (that wasn’t
in Θ), and that no bidder besides i that was assigned in Θ has dropped out. The
chain is said to have minimum length if there is no shorter chain that achieves
the same valuation as Θ−i. A link in this chain refers to the movement of a
bidder i from slot i to some slot i′. We say that this is a downward link if i′ > i;
otherwise it is an upward link.

Lemma 1. The minimum length chain for Θ−i does not contain a downward
link followed by an upward link.

Proof. Suppose it does contain such a sequence. Then, some bidder i1 moved
from slot i1 to slot i2 > i1, and bidder i2 moved from slot i2 to a slot i3 < i2.
An alternate solution, and thus a candidate solution for Θ−i is to have bidder i1
move from slot i1 to slot i3, have bidder i2 remain in slot i2, and keep everything
else the same. (Bidder i1 can move to slot i3 since i3 < i2 and i2 is in range for
bidder i1 (by the fact that i1 moved to i2 in Θ−i).)

The difference between the two solutions is ci2(vi2 − vi1) + ci3(vi1 − vi2) =
(ci3−ci2)(vi1−vi2). We know ci3 > ci2 since i3 < i2. We also know vi1 ≥ vi2 since
otherwise Θ could switch bidders i1 and i2 (note again that bidder i1 can move
to slot i2, since it did so in Θ−i). Thus the difference is non-negative, and so this
alternate solution to Θ−i has either greater valuation or a shorter chain. ��
Lemma 2. Let x and y be arbitrary bidders assigned to slots x and y in Θ,
where x < y. Then, (i) if slot y is in the range of bidder x, we have Θ−y ≥
Θ−x + cy(vx − vy), and (ii) Θ−x ≥ Θ−y + cx(vy − vx).

Proof. (i) Consider the assignment of bidder y in Θ−x. Recall that for any i,
all bidders besides i present in Θ are also present in Θ−i. Thus y is present
somewhere in Θ−x. Note also that the minimum-length chain for Θ−x ends at
slot x, and so if y is present in this chain, it cannot follow a downward link;
otherwise the chain would contradict Lemma 1, since x is above y. Thus we may
conclude that y ends up in position y′ ≤ y. Since slot y is in range for bidder x by
assumption, we also have that y′ is in range for bidder x; thus we can construct
a candidate solution for Θ−y by replacing (in Θ−x) bidder y with bidder x. We
may conclude that Θ−y ≥ Θ−x + cy′(vx − vy) ≥ Θ−x + cy(vx − vy).

(ii) This time we need to consider the assignment of x in Θ−y. By the same
logic as above, bidder x is present somewhere, and if x either stayed in the same
place of moved up, we can replace x with y (in Θ−y) to get a candidate for Θ−x,
and we are done. The only remaining case is when x moves down in Θ−y and
this is a bit more involved.

Consider the section of the chain of Θ−y from bidder x to the end at bidder
y (who is below x). Since x is on a downward link, and downward links cannot
be followed by an upward link (Lemma 1), it must be the case that this section
of the chain is entirely downward links. Let x → x1 → x2 → . . . → x� → y be
this chain, and so we have x < x1 < x2 . . . < x� < y.

24 G. Aggarwal, J. Feldman, and S. Muthukrishnan

We write the assignment of Θ to these �+ 2 places using the notation [x, x1,
x2, . . . , x�, y], and consider other assignments to these slots using the same no-
tation. The solution Θ−y assigns these slots as [w, x, x1, . . . , x�], where w is the
bidder before x in the chain. For notational purposes define x�+1 = y.

Consider the following alternate solution constructed from Θ−y: change only
the assignments to these special �+2 slots to [w, x1, . . . , x�, y]. This is a candidate
for Θ−x and so by calculating the difference in valuation between this candidate
solution and Θ−y we get

Θ−x ≥ Θ−y +

(
�∑
i

vxi(cxi − cxi+1)

)
+ cyvy − cx1vx (1)

Putting this aside for now, consider the following alternate solution forΘ. Take
the assignment in Θ and change the assignment to only those �+ 2 positions to
[y, x, x1, . . . , x�]. This is feasible since y moves up, and the remaining changes
are identical to Θ−y . Since this solution must have valuation at most that of Θ,

cxvy + cx1vx +
�∑
1

vxicxi+1 ≤ cxvx +

(
�∑
1

vxicxi

)
+ cyvy

⇐⇒ cx(vy − vx) ≤
(

�∑
1

vxi(cxi − cxi+1)

)
+ cyvy − cx1vx

This, combined with (1), implies (ii). ��

Now we are ready to prove the first part of our main theorem: that our bids give
the same outcome as VCG, and are indeed an envy-free equilibrium.

Proof of Theorem 1(a-c). The bids of the equilibrium are defined as follows.
For all bidders i > 1 assigned in Θ, we set bi = pi−1/ci−1. We set b1 to any
number greater than b2. For all bidders assigned in Θ, we set their stated cutoff
to their true cutoff κi. If there are more than k bidders, then for some bidder
α that was not assigned in Θ, we set bα = pk/ck, and set the stated cutoff of
bidder j to the bottom slot k. For all other bidders not in Θ, we set their bid to
zero, and their cutoff to their true cutoff.

Consider two arbitrary bidders x and y assigned in Θ, where x < y. Using
Lemma 2(ii), we get Θ−x ≥ Θ−y + cx(vy − vx). Substituting for Θ−x and Θ−y

using the definitions of px and py, respectively, we get:

px − cxvx ≥ py − cyvy + cx(vy − vx) ⇐⇒
(
vy −

py

cy

)
cy ≥

(
vy −

px

cx

)
cx

Since cy < cx, we get px

cx
>

py

cy
.

Since we chose x and y arbitrarily, we have just showed that b2 > . . . > bk,
and bk > bα if bidder α exists. We have b1 > b2 by definition, and all other bids
are equal to zero. Thus the bids are decreasing in the VCG order, and so the

Bidding to the Top: VCG and Equilibria of Position-Based Auctions 25

top-down auction will choose the same allocation as VCG. By construction, the
top-down auction will also have the same prices as VCG.

It remains to show that this allocation and pricing is an envy-free equilibrium.
Consider again two bidders x and y assigned in Θ with x < y. The utilities of x
and y are ux = cxvx − px and uy = cyvy − py. We must show that x does not
envy y, and that y does not envy x.

If y is out of range of bidder x, then certainly x does not envy y. If x is
in range of bidder y, then by Lemma 2(i), we get Θ−y ≥ Θ−x + cy(vx − vy).
Substituting for Θ−y and Θ−x using the definitions of py and px, we get

Θ + py − cyvy ≥ Θ + px − cxvx + cy(vx − vy)
⇐⇒ cyvx − py ≤ cxvx − px = ux.

Thus x does not envy y. Similarly, Lemma 2(ii) shows that y does not envy x.
Now consider some bidder z not assigned in Θ. We must show that bidder

z does not envy any bidder that is assigned a slot in the desired range of z.
Consider some such bidder y; replacing y with z creates a candidate for Θ−y.
Thus we have Θ−y ≥ Θ+cy(vz−vy), which becomes py = Θ−y−Θ+cyvy ≥ cyvz .
This implies that z does not envy y. ��

Now it remains to show the second part of Theorem 1, namely that among all
envy-free equilibria, the one we define is optimal for each bidder. First we give
a lemma showing that envy-freeness in the top-down auction implies that the
allocation is the same as VCG. Then we use this to compare our equilibrium
with an arbitrary envy-free equilibrium.

Lemma 3. Any envy-free equilibrium of the top-down auction has an allocation
with optimal valuation.

Proof. For the purposes of this proof, we will extend any allocation of bidders to
slots to place all n bidders into “slots”. For this, we will introduce dummy slots
indexed by integers greater than k, with click-through rate ci = 0. We index the
bidders according to their (extended) allocation in Θ.

For the purposes of deriving a contradiction, let E, p be the allocation and
pricing for an envy-free equilibrium of the top-down auction such that the val-
uation of E is less than Θ. Thus, pi refers to the price of slot i in this envy-free
equilibrium. Define a graph on n nodes, one for each slot. For each bidder i,
make an edge from i to j, where j is the slot in which bidder i is placed in
E; i.e., bidder i is in slot i in Θ and in slot j in E. Note that this graph is a
collection of cycles (a self-loop is possible, and is defined as a cycle).

Define the weight of an edge (i, j) to be the change in valuation caused by
bidder i moving from slot i in Θ to slot j in E. So, we have that the weight
of (i, j) is equal to vi(cj − ci). Since the total change in valuation from Θ to E
is negative by definition, the sum of the weights of the edges is negative. This
implies that there is a negative-weight cycle Y in the graph, and so we have∑

(i,j)∈Y

vi(cj − ci) < 0. (2)

26 G. Aggarwal, J. Feldman, and S. Muthukrishnan

By the fact that E is envy-free, for each edge (i, j), we also have that bidder
i would rather be in slot j than in slot i (under the prices p imposed by the
envy-free equilibrium). In other words, vicj − pj ≥ vici − pi. Rearranging and
summing over the edges in Y , we get∑

(i,j)∈Y

vi(cj − ci) ≥
∑

(i,j)∈Y

pj − pi = 0. (3)

(The sum on the right-hand side equals zero from the fact that Y is a cycle.)
Equations (2) and (3) together give us a contradiction. ��

Note that the profit of an advertiser i is the same under all VCG outcomes, and
is equal to the difference in valuation between Θ and Θ−i.

Proof of Theorem 1(d). Consider some envy-free equilibrium E of the top-
down auction. This equilibrium must have an allocation with optimal valuation
(by Lemma 3). We will call this allocation Θ. Let {pE

i }i be the price of slot i in
this equilibrium; We will rename the bidders such that bidder i is assigned to
slot i by allocation Θ. Consider one such bidder x assigned to slot x. Consider
the chain x� → x�−1 → . . .→ x0 = x for Θ−x. (Here bidder xj moves from slot
xj in Θ to slot xj−1 in Θ−x.) By the fact that E is envy-free, for all j ∈ [0, �−1]
we have

vxj+1cxj+1 − pE
xj+1

≥ vxj+1cxj − pE
xj

⇐⇒ pE
xj
≥ vxj+1(cxj − cxj+1) + pE

xj+1
.

(Each move is this chain is feasible, since it was made by Θ−x.) Composing these
equations for j = 0, . . . , �− 1, we get

pE
x = pE

x0
≥ vx1(cx0 − cx1) + vx2(cx1 − cx2) + . . .+ vx�

(cx�−1 − cx�
)

But note that each term of the right-hand side of this inequality represents the
difference in valuation for a bidder on the chain of Θ−x. Thus the sum of these
terms is exactly the VCG price px, and we have pE

x ≥ px. Hence, the profit of
advertiser x under equilibrium E is no less than her profit under VCG. ��

4 Concluding Remarks

The generalized second-price auction has worked extraordinarily well for search
engine advertising. We believe that the essential properties of this auction that
make it a success are that it preserves the ranking order inherent in the positions,
and that it is stable in the sense that no bidder has an incentive to change her
bid by a small amount for a small advantage. We have given a simple new prefix
position auction mechanism that preserves these properties and has the same
equilibrium properties as the regular GSP.

A natural question arises if advertisers will have preference for positions that
go beyond the top κi’s. It is possible that there are other considerations that

Bidding to the Top: VCG and Equilibria of Position-Based Auctions 27

make lower positions more desirable. For example, the last position may be
preferable to the next-last. Also, appearing consistently at the same position
may be desirable for some. Some of the advertisers may not seek the topmost
positions in order to weed out clickers who do not persist through the topmost
advertisements to choose the most appropriate one. Thus, there are a variety of
factors that govern the position preference of an advertiser. In the future, this
may lead to more general position auctions than the prefix auctions we have
studied here. We briefly comment on two variants.

Arbitrary Ranges. If we allow top cutoffs (i.e., bidder i can set a valuation αi and
never appear above position αi), we can consider running essentially the same
top-down auction: For each position in order from the top, run a simple Vickrey
auction (with one winner) among those advertisers whose range includes the
position being considered; the winner is allocated the position, pays according
to the next-ranked advertiser, and is removed from the pool of advertisers for
subsequent auctions.

The difference here is that we can encounter a position j where there are
not advertisers willing to take position j, but there are still advertisers willing
to take positions lower than j. (This cannot occur with prefix ranges.) On a
typical search page, the search engine must fill in something at position j, or
else the subsequent positions do not really make sense. Practically speaking,
one could fill in this position with some sort of “filler” ad. Given some sort
of resolution of this issue, the top-down auction maintains the minimum pay
property for general ranges, by essentially the same argument as the prefix case
in this paper.

However, the property that there is an equilibrium that matches the VCG
outcome is no longer true, as shown by the following example:

Example 3. Suppose we have three bidders, and their ranges and valuations
are given as follows: A (1,1) $3; B (2,3) $2; C (1,3) $1. We also have three
positions, and we get 100, 99 and 98 clicks in them, respectively. The VCG
outcome is an allocation of [A,B,C], and prices [$2, $1, $0] (for all clicks). To
achieve this outcome in the top-down range auction, we must have A with the
highest bid, and it is∞ wlog. Since C is the only other bidder competing for the
first slot, the price of A (which must be $2) is determined by the bid of C, and
thus $2 = p1 = bCc1 = 100bC. Therefore we have that bC = 2/100. Since bidder
B wins the second slot, we must have bidder B outbidding bidder C, and the
price of B is also determined by the bid of C; so we get p2 = bCc2 = 99(2/100).
This is inconsistent with the VCG price of $1.

General Position Bids. One is tempted to generalize the position-based auction
so that instead of enforcing a ranking, each advertiser submits separate bids for
each position and the market decides which positions are better. Suppose we
allowed such bids, and let bi,j denote the bid of advertiser i for position j.

In this setting, the ordering property no longer makes sense, but it still might
be interesting to consider the minimum-pay property. We do need to clarify our
definition of this property; because the advertiser has control of more than just

28 G. Aggarwal, J. Feldman, and S. Muthukrishnan

the bid that gave her the victory; we need to make sure that altering the other
bids cannot give the advertiser a bargain for this particular position.

A natural mechanism and pricing scheme is as follows: Given the bids bi,j ,
compute the maximum matching of bids to positions (i.e., the VCG allocation).
Now for each winning bid bij, do the following. delete all other edges from i, and
lower this bid until the max matching no longer assigns i to j. Set the price per
click ppcj to the bid where this happens.

Note that this price has the property that if the winner of a position bids
between the bid and the price, then they either get the same position at the
same price, or perhaps one of their other bids causes them to get a different
position. But, we still have the property that the winner cannot get the position
she won for a lower price.

It turns out that this is exactly the VCG mechanism, as seen by the following
argument. In the following, let M be the valuation of the maximum matching,
and for some i let M−i be the valuation of the maximum matching that does
not include bidder i. Note also that if bidder i is assigned position j, the VCG
price is M−i − (M − bi,jcj).

In the suggested auction, when setting the price for bidder i, consider the
moment when the bid is lowered to ppcj . The total valuation of the matching at
this point is M − (bi,j −ppcj)cj . But the valuation of the matching at this point
also is equal to M−i since lowering the bid below ppcj makes the matching
no longer assign i to j (and all other edges are deleted, so i is not assigned
anywhere else). So we get M − (bi,j − ppcj)cj = M−i, and therefore ppcjcj =
M−i − (M − bi,jcj), which is the VCG price.

References

1. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the general-
ized second price auction: Selling billions of dollars worth of keywords. In: Second
Workshop on Sponsored Search Auctions. (2006)

2. Varian, H.: Position auctions (2006) Working Paper, available at
http://www.sims.berkeley.edu/~hal/Papers/2006/position.pdf.

3. Aggarwal, G.: Privacy Protection and Advertising in a Networked World. PhD
thesis, Stanford University (2005)

4. Aggarwal, G., Goel, A., Motwani, R.: Truthful auctions for pricing search keywords.
In: ACM Conference on Electronic Commerce (EC06). (2006)

5. Vickrey, W.: Counterspeculation, auctions and competitive sealed tenders. Journal
of Finance 16 (1961) 8–37

6. Clarke, E.: Multipart pricing of public goods. Public Choice 11 (1971) 17–33
7. Groves, T.: Incentives in teams. Econometrica 41 (1973) 617–631
8. Nielsen//NetRatings: Interactive advertising bureau (IAB) search branding

study (2004) Commissioned by the IAB Search Engine Committee. Available at
http://www.iab.net/resources/iab searchbrand.asp.

9. Mas-Collel, A., Whinston, M., Green, J.: Microeconomic Theory. Oxford University
Press (1995)

Coping with Interference:

From Maximum Coverage to Planning Cellular
Networks

David Amzallag, Joseph (Seffi) Naor, and Danny Raz

Computer Science Department
Technion - Israel Institute of Technology

Haifa 32000, Israel
{amzallag,naor,danny}@cs.technion.ac.il

Abstract. Cell planning includes planning a network of base stations
providing a coverage of the service area with respect to current and future
traffic requirements, available capacities, interference, and the desired
quality-of-service. This paper studies cell planning under budget con-
straints through a very close-to-practice model. This problem generalizes
several problems such as budgeted maximum coverage, budgeted unique
coverage, and the budgeted version of the facility location problem.

We present the first study of the budgeted cell planning problem. Our
model contains capacities, non-uniform demands, and interference that
are modeled by a penalty-based mechanism that may reduce the contri-
bution of a base station to a client as a result of simultaneously covering
this client by other base stations. We show that this very general problem
is NP-hard to approximate and thus we define a restrictive version of
the problem that covers all interesting practical scenarios. We show that
although this variant remains NP-hard, it can be approximated within
a factor of e−1

2e−1
of the optimum.

1 Introduction

Consider a set I = {1, 2, . . . , m} of possible configurations of base stations and a
set J = {1, 2, . . . , n} of clients. Each base station i ∈ I has capacity wi, opening
cost ci, and every client j ∈ J has a demand dj . The demand is allowed to be
simultaneously satisfied by more than one base station. Each base station i has
a coverage area represented by a set Si ⊆ J of clients admissible to be covered
(or satisfied) by it; this base station can satisfy at most wi demand units of the
clients in Si.

When a client is belong to the coverage area of more than one base station,
interference between the servicing stations may occur. These interference are
modeled by a penalty-based mechanism and may reduce the contribution of a
base station to a client. Let P be an m ×m × n matrix of interference, where
p(i1, i2, j) ∈ [0, 1] represents the fraction of i1’s service which client j loses as
a result of interference with i2 (defining p(i, i, j) = 0 for every i ∈ I, j ∈ J ,

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 29–42, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

30 D. Amzallag, J. Naor, and D. Raz

and p(i, i′, j) = 0 for every j /∈ Si′)1. This means that the interference caused
as a result of a coverage of a client by more than one base station depends on
the geographical position of the related “client”. Followed by the above setting,
we denote by Q(i, j) the net contribution of base station i to client j, for every
j ∈ J, i ∈ I, after incorporating the interference. A detailed description of Q(i, j)
is given later in this section.

The budgeted cell planning problem (BCPP) asks for a subset of base stations
I ′ ⊆ I whose cost does not exceed a given budget B, such that the total number
of fully satisfied clients is maximized. That is, a solution to BCPP needs to
maximize the number of clients for which

∑
i∈I Q(i, j) ≥ dj .

This problem generalizes several problems such as budgeted maximum
coverage [10], budgeted unique coverage [5], and the budgeted version of the
facility location problem (analyzed in Section 2.4). So far, these problems were
studied (in the sense of approximation algorithms) without considering capac-
ities or non-uniform demands. Coping with interference in covering problems
is a great algorithmic challenge; unlike problems where there are no interfer-
ence, during the time the solution is established, adding a new candidate
(e.g., set, bin, item) to the cover may decrease the value of the solution. Fur-
thermore, this problem involves full coverage (also known as all-or-nothing cov-
erage) which usually makes the approximation task more complex (see [4] for
example).

Cell planning is one of the most significant steps in the planning and man-
agement of cellular networks and it is among the most fundamental problems
in the field of optimization of cellular networks. Cell planning includes plan-
ning a network of base stations that provides a (full or partial) coverage of the
service area with respect to current and future traffic requirements, available
capacities, interference, and the desired QoS. Under these constraints, the ob-
jective is, in general, to minimize the operator’s total system cost. Cell planning
is employed not only when new networks are built or when modifications to a
current networks are made, but also (and mainly) when there are changes in
the traffic demands, even within a small local area (e.g., building a new mall in
the neighborhood or opening new highways). Planning cellular networks under
budget limitations is practically the most important optimization problem in
the planning stage. Since budget restrictions may lead to failure in achieving
the required coverage, the objective, in this case, is hence to maximize the num-
ber of covered clients. This paper studies cell planning under budget constraints
where the goal is to have a theoretical model that can be used in practical
setting.

Computing Q(i, j). Our technique for solving BCPP is independent in the
structure of Q(i, j). We describe here two general models for computing Q(i, j).

Let xij be the fraction of the capacity wi of a base station i that is supplied
to client j. Recall that I ′ ⊆ I is the set of base stations selected for opening, the
contribution of base station i to client j is, in general is defined by
1 For simplicity, we do not consider here interference of higher order. These can be

further derived and extended from our model.

Coping with Interference 31

Q(i, j) = wixij ·
∏

i′∈I′

(
1− p(i, i′, j)

)
. (1)

This means that the net contribution of base station i to client j depends on all
other base stations i′ that contains j in their coverage areas. Each of these base
stations “interferes” base station i to service j and reduces the contribution of
wixij by a factor of p(i, i′, j).

Since (1) is a high-order expression we use the following first-order
approximation2∏

i′∈I′

(
1− p(i, i′, j)

)
=
(
1− p(i, i′1, j)

)(
1− p(i, i′2, j)

)
. . . ≈ 1−

∑
i′∈I′

p(i, i′, j)(2)

Combining (1) and (2) we get

Q(i, j) ≈
{

wixij

(
1−
∑

i′∈I′ p(i, i′, j)
)
,
∑

i′∈I′ p(i, i′, j) < 1
0, otherwise. (3)

Consider, for example, a client j belonging to the coverage areas of two base
stations i1 and i2, and assume that just one of these base stations, say i1, is
actually participating in j’s satisfaction (i.e., xi1j > 0 but xi2j = 0). According
to the above model, the mutual interference of i2 on i1’s contribution (w1xi1j)
should be considered, although i2 is not involved in the coverage of client j.

In most cellular wireless technologies, this is the usual behavior of interference.
However, in some cases a base station can affect the coverage of a client if and
only if it is participating in its demand satisfaction. The contribution of base
station i to client j in this case is defined by

Q(i, j) ≈
{

wixij

(
1−
∑

i′ �=i∈Ij
p(i, i′)

)
,
∑

i′ �=i∈Ij
p(i, i′) < 1

0, otherwise.
(4)

where Ij is the set of base stations that participates in the coverage of client j,
i.e., Ij = {i ∈ I : xij > 0}. Notice that in this model the interference function
does not depend on the geographic position of the clients.

Our contributions. In this paper we present the first study of the budgeted
cell planning problem. To the best of our knowledge, despite the extensive re-
search of non-budgeted cell planning problems (i.e., minimum-cost cell planning,
as descried in Section 2.1), there is no explicit study in the literature of the BCPP
(in both theoretical and, surprisingly, also in practical settings). We survey, in
Section 2, some previous work related to BCPP. Budgeted maximum coverage,
budgeted unique coverage, budgeted facility location, and maximizing submod-
ular set functions are among the reviewed problems. In Section 3 we show that
approximating BCPP is NP-hard. Then we define a restrictive version of BCPP,

2 Notice that, in this context, one can precisely estimate the “cost” of such approx-
imation using [11,9]. However, for simplicity we do not include these works in this
practical model.

32 D. Amzallag, J. Naor, and D. Raz

the k4k-budgeted cell planning, by making additional assumptions that are mo-
tivated by practical considerations. The additional property is that every set of
k-opened base stations can fully satisfy at least k clients, for every integral value
of k. In Section 4 we show that this problem remains NP-hard and present an
e−1
2e−1 (≈ 0.3873) factor approximation algorithm for this problem.

2 Related Work

2.1 The Minimum-Cost Cell Planning Problem

The minimum-cost cell planning problem asks for a minimum-cost subset I ′ ⊆ I
that satisfies the demands of all the clients. This important problem is one
of the most studied on the area of cellular network optimization. Previous
work dealt with a wide variety of special cases (e.g., cell planning without
interference, frequency planning, uncapacitated models, antenna-type limita-
tions, and topological assumptions regarding coverage). These works range from
meta-heuristics (e.g., genetic algorithms, simulated annealing, etc.) and greedy
approaches, through exponential-time algorithms that compute an optimal solu-
tion, to approximation algorithms for special cases of the problem. A comprehen-
sive survey of various works on minimum-cost cell planning problems appears
in [3]. An O(logW)-approximation algorithm for the non-interference version
of the minimum-cost cell planning problem is presented in [2], where W is the
largest given capacity of a base station.

2.2 Base Stations Positioning Under Geometric Restrictions

A PTAS for the uncapacitated BCPP with unit demands (i.e., wi = ∞ and
dj = 1 for all i ∈ I, j ∈ J) and without interference is given in [7]. In this
case the problem is studied under geometric restrictions of disks of constant
radius D (i.e., Si is the set of clients located within a distance no greater than
D from the geometric location of i, for every i ∈ I), a minimal distance between
different base stations that have to be kept, and clients as well as base stations
are associated with points in the Euclidean plane.

2.3 Budgeted Maximum Coverage and Budgeted Unique Coverage

BCPP is closely related to the budgeted maximum coverage and the budgeted
unique coverage version of set cover. Given a collection of subsets S of a universe
U , where each element in U has a specified weight and each subset has a speci-
fied cost, and a budget B. The budgeted maximum coverage problem asks for a
subcollection S′ ⊆ S of sets, whose total cost is at most B, such that the total
weight of elements covered by S′ is maximized. The budgeted unique coverage
problem is a similar problem where elements in the universe are uniquely covered,
i.e., appears in exactly one set of S′. Both problems are special cases of BCPP in
which elements are clients with unit demands, every set i ∈ I corresponds to a
base station i containing all clients in its coverage area Si ⊆ J , and wi ≥ |Si| for

Coping with Interference 33

all base stations in I. In this setting, budgeted maximum coverage is the case (in
the sense that a solution for BCPP is optimal if and only if it is optimal for the
budgeted maximum coverage) when there are no interference (i.e., P is the zero
matrix), while budgeted unique coverage is when the interference is taking to be
the highest (i.e., p(i′, i′′, j) = 1 for every i′
= i′′, and p(i′, i′′, j) = 0 otherwise).

For the budgeted maximum coverage problem, there is a (1− 1
e)-approximation

algorithm [10,1], and this is the best approximation ratio possible unless NP=P
[6]. For the budgeted unique coverage problem, there is an Ω(1/ log n)-
approximation algorithm [5] and, up to a constant exponent depending on ε,
O(1/ log n) is the best possible ratio assuming NP � BPTIME (2nε

) for some
ε > 0. Interestingly enough, we will show in the next section that our general-
ization for both of these problems is hard to approximate.

2.4 Budgeted Facility Location

The budgeted version of the (uncapacitated) facility location problem is also
closely related to BCPP. In the traditional (uncapacitated) facility location prob-
lem we wish to find optimal locations in which to build facilities, from a given set
I, to serve a given set J of clients, where building a facility in location i incurs
a cost of fi. Each client j must be assigned to one facility, thereby incurring a
cost of cij (without assuming the triangle inequality). The objective is to find
a solution of minimum total cost. The budgeted facility location problem is to
find a subset I ′ ⊆ I such that the total cost of opening facilities and connecting
clients to open facilities does not exceed a given budget B, and the total number
of connected clients is maximized.

Given an instance of the budgeted (uncapacitated) facility location problem,
we show in the following that this problem is a special case of the budgeted
maximum coverage problem. By a star we mean a pair (i,Q) with i ∈ I and
Q ⊆ J . The cost of a star (i,Q) is c(i,Q) = fi +

∑
j∈Q cij , and its effectiveness is

|Q|
c(i,Q) . Then the budgeted (uncapacitated) facility location problem is a special
case of the budgeted maximum coverage problem: set J is the set of elements
that need to be covered, and let S = 2J , where c(Q) is the minimum-cost of a
star (i,Q) (we take the same budget for both instances).

However, the resulting budgeted maximum coverage instance has exponential
size, and therefore this reduction cannot be used directly. Nevertheless, we can
apply the algorithm of [10] without generating the instance explicitly, as pro-
posed by Hochbaum [8]: In each step, we have to find a most effective star, open
its facility and henceforth disregard all clients in this star. Although there are
exponentially many stars, it is easy to find the most effective one as it suffices
to consider stars (i,Qi

k), for i ∈ I and k ∈ {1, 2, . . . , |J |}. Here Qi
k denotes the

first k clients in a linear order with nondecreasing cij . Clearly, other stars cannot
be more effective. Hence, we get the same approximation ratio as the budgeted
maximum coverage problem. Moreover, since the budgeted maximum coverage
can be described, by a simple reduction, as a special case of the budgeted facility
location, the best we can hope for the budgeted facility location problem is the
same approximation factor as the budgeted maximum coverage problem.

34 D. Amzallag, J. Naor, and D. Raz

2.5 Maximizing Submodular Set Functions

Let U = {1, . . . , n}, let cu, u ∈ U be a set of nonnegative weights, and let B be a
nonnegative budget. The problem of maximizing nondecreasing submodular set
function with budget constraint is

max
S⊆U

{
f(S) :

∑
u∈S

cu ≤ B

}
,

where f(S) is a nonnegative nondecreasing submodular polynomially computable
set function (a set function is submodular if f(S) + f(T) ≥ f(S ∪ T) + f(S ∩
T) for all S, T ⊆ U and nondecreasing if f(S) ≤ f(T) for all S ⊆ T). For this
problem, there is a (1 − 1

e)-approximation algorithm [12], and as this problem is
a generalization of the budgeted maximum coverage (cu = 1, for all u ∈ U , and
f(S) denotes the maximum weight that can be covered by the set S), this ratio is
the best achievable.

Although this problem seems, at least from a natural perspective, to be closely
related to BCPP, observe that set (covering) functions are not submodular, in
general, when interference are involved. Consider, for example, an instance of
BCPP in which I = {1, 2, 3} with w1 = w2 = 1 and w3 = 1/4, a single client
with d = 2 that can be satisfied by all base stations, and symmetric penalties
p(1, 3) = p(2, 3) = 1/2, while p(1, 2) = 0. Taking S = {1}∪{3} and T = {2}∪{3}
we have f(S) + f(T) � f(S ∪ T) + f(S ∩ T), where f(S) is defined to be the
maximum number of fully satisfied clients that can be covered by the set S of
base stations.

3 Inapproximability

As mentioned earlier, the budgeted maximum coverage as well as budgeted
unique coverage can be seen as special cases of BCPP. In both cases the ap-
proximation algorithms are based on the greedy technique of Khuller, Moss, and
Naor [10]. This means picking at each step the most effective set until either no
element is left to be covered or the budget limitation is exceeded. Combining
this method with the enumeration technique yields the (1 − 1

e)-approximation
algorithm of [10].

Unfortunately, a natural attempt to adapt the ideas from [10] to the setting
of BCPP fails, as stated by the next theorem.

Theorem 1. It is NP-hard to find a feasible solution to the budgeted cell plan-
ning problem.

Proof. The proof is via a reduction from the subset sum problem. Given
an instance of the subset sum problem, i.e., a set of natural numbers A =
{a1, a2, . . . , an} and an additional natural number T = 1

2

∑n
i=1 ai. We build an

instance of the budgeted BCPP with I = {1, 2, . . . , n}, |J | = 1 and wi = ci = ai

for every i ∈ I; the budget and the single client’s demand are B = d = T and
no interference are assumed.

Coping with Interference 35

It is easy to see that the client is satisfied if and only if there exists S ⊆
A with

∑
i∈S ai = T . Since there is only a single client, any polynomial-time

approximation algorithm must produce a full coverage, solving the subset sum
problem in polynomial time. �

4 The k4k-Budgeted Cell Planning Problem

In light of the above inapproximability result, we turn to define a restrictive
version of BCPP which is general enough to cover all interesting practical cases.
In order to do that, we use the fact that in general, the number of base sta-
tions in cellular networks is much smaller than the number of clients. Notice
that when planning cellular networks, the notion of “clients” sometimes means
mobile-clients and sometimes it represents the total traffic demand created by
many mobile-clients at a given location. Our models support both forms of rep-
resentations. Moreover, when there is a relatively large cluster of antennas in a
given location, this cluster is usually addressed to meet the traffic requirements
of a high-density area of clients. Thus for both interpretations of “clients” the
number of satisfied clients is always much bigger than the number of base sta-
tions. Followed by the above discussion, we define the k4k-budgeted cell planning
problem (k4k-BCPP) to be BCPP with the additional property that every set
of k base stations can fully satisfy at least k clients, for every integer k (and we
refer to this property as “k4k property”).

In this section we show that this problem can be approximated within a factor
of e−1

2e−1 of the optimum. First, we show that this problem remains hard.

Theorem 2. The k4k-budgeted cell planning problem is NP-hard.

Proof. Via a reduction from the budgeted maximum coverage problem. Con-
sider an instance of the budgeted maximum coverage problem, that is, a collec-
tion of subsets S = {S1, . . . , Sm} with associated costs {ci}m

i=1 over a domain of
elements X = {x1, . . . , xn}, and a budget L.

We can construct an instance of k4k-BCPP such that an optimal solution
to this problem gives an optimal solution to the budgeted maximum cover-
age problem. First, we construct a bipartite graph of elements vs. sets, de-
rived from the budgeted maximum coverage instance: there is an edge (xi, Sj)
if and only if element xi belongs to set Sj . The instance of k4k-BCPP is as
follows: the set of clients is {x1, . . . , xn} ∪ {y1, . . . , ym}, where each of the xj ’s
is of unit demand and each of the yr’s is of zero demand, the set of potential
base stations is {S1, . . . , Sm}, each of opening cost ci, a capacity wi = |Si|,
and a set of admissible clients for covering Si ∪ {y1, . . . , ym}, for every i =
1, . . . , m, and j = 1, . . . , n, and a budget B = L, while no interference are
assumed.

Clearly, a solution to k4k-BCPP is optimal if and only if the corresponding
solution of the budgeted maximum coverage instance is optimal. �

36 D. Amzallag, J. Naor, and D. Raz

4.1 The Structure of BCPP Solutions

Our algorithm is based on a combinatorial characterization of the solution set
to BCPP3 (and in particular to k4k-BCPP). The following lemma is a key
component in the analysis of our approximation algorithm.

Lemma 1. Every solution to the k4k-budgeted cell planning problem can be
transformed to a solution in which the number of clients that are covered by
more than one base station is at most the number of opened base stations. More-
over, this transformation leaves the number of fully satisfied clients as well as
the solution cost unchanged.

Proof. Consider a solutionΔ = {I ′, J ′,x} to the k4k-BCPP , where I ′ ⊆ I is the
set of base stations selected for opening, J ′ ⊆ J is the set of fully satisfied clients,
xij ’s are the base station-client coverage rates, and J ′′ ⊆ J ′ is the set of clients
that are satisfied by more than one base station. Without loss of generality we
may assume that every client has a demand greater than zero, since there is no
need for “covering” clients with zero demand. We associate the weighted bipartite
graph GΔ = (I ′ ∪ J ′, E) with every such solution. In this graph, (i, j) ∈ E has
weight w(i, j) = wixij if and only if xij > 0, and w(i, j) = 0, otherwise. Two
cases need to be considered:

1. If GΔ is acyclic then we are done (i.e., no transformation is needed); in
this case |J ′′| < |I ′|. To see this, let T be a forest obtained from GΔ by
fixing an arbitrary base station vertex as the root (in each of the connected
components of GΔ) and trimming all client leaves. These leaves correspond
to clients who are covered, in the solution, by a single base station. Since the
height of the tree is even, the number of internal client-vertices is at most
the number of base station-vertices, hence |J ′′| < |I ′|.

2. Otherwise, we transform GΔ = (I ′ ∪ J ′, E) into an acyclic bipartite graph
GΔ′ = (I ′ ∪ J ′, E′) using a cycle canceling algorithm. For simplicity, we first
describe the following algorithm for the case that interference do not exist.

Algorithm 1 [cycle canceling without interference]. As
long as there are cycles in GΔ, pick a cycle C and let γ be the weight
of a minimum-weight edge on this cycle. Take a minimum-weight
edge on C and, starting from this edge, alternately, in clockwise
order along the cycle, decrease and increase the weight of every edge
by γ.

It is easy to verify that at the end of the algorithm every client receives, and
every base station supplies, the same amount of demand units as before.
Moreover, the only changes here are the values of the xij ’s. Hence, Algo-
rithm 1 preserves the number as well as the identity of the satisfied clients.
Since at each iteration at least one edge is removed, GΔ′ is acyclic, thus
yielding |J ′′| < |I ′| as in the former case.

3 Results in this section can be applied also for non-k4k versions of the BCPP. For
simplicity, we concentrate here on the k4k versions of the problem.

Coping with Interference 37

When interferences exist but Q(i, j) is independent on the xij ’s, we can
still use Algorithm 1 to preserves the number as well as the identity of the
satisfied clients. In this case change in the xij ’s does not affect the Q(i, j) of
any client. However, when Q(i, j) is a function of the xij ’s this algorithm can
no longer guarantee this. This is true because of the way the fully satisfied
clients “use” base stations not on the cycle depends on the interference, and
thus the modifications of the edge weights on the cycle are not enough. To
overcome this problem we generalize the method of cycle canceling. Consider
a cycle C = (v1, . . . , vk = v1) in GΔ, such that odd vertices correspond to
base stations. Let vi be any client-vertex in C. Now suppose the base station
which corresponds to vi−1 increases its supply to vi by α units of demand.
The basic idea of the generalization is to compute the exact number of
demand units the base station which corresponds to vi+1 must subtract
from its coverage, in order to preserve the satisfaction of that client, taking
into account all the demand (with its interference) supplied by base station
vertices which are outside the cycle.

Notice that increasing a certain w(vi, vi+1) does not necessary increase
the supply to client vi. When interferences are considered, it could actually
happen that increasing w(vi, vi+1) decreases the supply to vi (if the new
interference penalties outweigh the increased supply). Similarly, decreasing
some w(vi, vi+1) could actually increase the supply to vi. However, one can
assume for optimal solutions that these cases do not occur (as the solution
could be transformed into an equivalent solution where such edges have
w(vi, vi+1) = 0).

To demonstrate the idea of canceling cycles when interferences exist let us
assume, for simplicity, that there is only a single base station which is not
on the cycle, denoted by vo, which participates in the coverage of client vi,
and the interference model is assumed to be the one in (4). Then, the total
contribution of base stations vi−1, vi+1, and vo to the coverage of client vi

is, by (1),
δ(vi) = Q(v0, vi) + Q(vi+1, vi) + Q(vi−1, vi).

Given that the supply of base station vi−1 to client vi is increased by α
units of demand (i.e., w′(vi−1, vi) = w(vi−1, vi)+α, where w′ is the updated
weight function of the edges), base station vi+1 must decrease its supply to
this client by β units of demand (i.e., w′(vi+1, vi) = w(vi+1, vi)−β) in order
to preserve the satisfaction of client vi (assuming vo’s supply remains the
same). Then, the value of β can be computed via a solution to the following
equation (in variable β),

δ′(vi) = Q′(v0, vi) + Q′(vi+1, vi) + Q′(vi−1, vi) = δ(vi).

Notice that our cycle canceling algorithms are used for the proof of existence
and such computations are not necessary for the execution of our approxi-
mation algorithm.

38 D. Amzallag, J. Naor, and D. Raz

Algorithm 2 [cycle canceling with interference]. As long as
there are cycles in GΔ, pick a cycle C = (v1, . . . , vk = v1) where odd
vertices represent base stations. As before, every edge ei = (vi, vi+1)
on the cycle has a weight w(vi, vi+1) associated with it, representing
the amount of demand supplied by the base-station-vertex in ei to
the client-vertex in ei. For simplicity, let d′i denote this value.

We recursively define a sequence of weights {yi}k−1
i=1 , with alter-

nating signs which represent a shift in the demand supply of base
stations to clients along the cycle. Start by setting y1 = ε, repre-
senting an increase of ε to the demand supplied by the base-station-
vertex v1 to the client-vertex v2. This increase of supply may not
all be credited to vertex v2 due to interference, some of which are
possibly due to base stations which are outside the cycle, which con-
tribute to v2’s satisfaction. Set y2 to be the maximal decrease in the
demand supplied by base-station-vertex v3 to client-vertex v2, such
that v2 remains satisfied. This amount of demand is now “available”
to base-station-vertex v3, hence we allow v3 to supply this surplus
to client-vertex v4. We continue in this manner along the cycle.

If, by repeating this procedure, we end up with |yk−1| ≥ ε, then
we say the cycle is ε-adjustable. Otherwise, redefine the values of
{yi}k−1

i=1 in a similar manner, but in reverse order, i.e., starting from
yk−1 and ending with y1. However, it is easy to verify that at least
one direction, the cycle is ε-adjustable, for some value of ε.

Let εmax be the largest value for which the cycle is adjustable, and
consider its corresponding values of yi, i = 1, . . . , k−1. Note that the
yi’s have alternating signs, and for any client-vertex vi, yi = −yi−1.
Define the quotients zi = d′i/yi for every i = 1, . . . , k − 1, and let
zmin = minzi<0 |zi|. Now increase the amount of demand supplied
on every edge on the cycle to be w′(vi, vi+1) = yi · zmin, where w′ is
the updated weight function of the edges, as before.

Two important invariants are maintained throughout our cycle-canceling
procedure. The first is that w′(i, j) ≥ 0 for every edge (i, j) of the cycle. The
second is that there exists at least one edge e = (i, j) on the cycle for which
w′(i, j) = 0. Therefore Algorithm 2 preserves the number and the identity
of the satisfied clients and GΔ′ is also a solution. Since at each iteration at
least one edge is removed, GΔ′ is acyclic and |J ′′| < |I ′| as before. �

4.2 An e−1
2e−1

-Approximation Algorithm

We are now ready to present a e−1
2e−1 -approximation algorithm for k4k-BCPP .

We combine ideas from [10] together with our characterization of the optimal
solution set of k4k-BCPP. Throughout this section we use the following notation.
Let Ni be the maximum number of clients that can be covered by a single
base station i (i.e., without allowing simultaneously covering of a client), i =
1, 2, . . . , m. Let N(I ′) denote the total number of clients that can be covered
by I ′ in such a way that each client is covered by a single base station, and let

Coping with Interference 39

Algorithm 3. k4k-budgeted cell planning

1: J ′ ← ∅; H3 ← 0;
2: H1 ← maximum number of base stations having a total opening cost less than or

equal to B
3: H2 ← argmax

{
N(S), such that S ⊆ I , |S| < �, and c(S) ≤ B

}
4: for all S ⊆ I , such that |S| = � and c(S) ≤ B do
5: I ← I \ S
6: repeat

7: select i ∈ I that maximizes
N′

i
ci

8: if c(S) + ci ≤ B then
9: S ← S ∪ {i}

10: J ′ ← J ′ ∪ Ji

11: update wi by the demand units supplied to Ji

12: c(S) ← c(S) + ci

13: end if
14: I ← I \ {i}
15: until I = ∅
16: if N(S) > H3 then H3 ← N(S)
17: end for
18: Output the solution having the largest value from

{
H1, H2, H3

}

N ′
i denote the maximum number of clients that can be covered by a single base

station i, but not covered by any other base stations in I ′. Finally, we denote
by Ji the set of clients that are fully satisfied by base station i. Without loss
of generality we may assume that the opening cost of any base station does not
exceed B, since base stations of cost greater than B do not belong to any feasible
solution.

We first observe that the greedy algorithm that opens at each step a base sta-
tion maximizing the ratio N ′

i

ci
has an unbounded approximation factor. Consider,

for example, two base stations and M + 2 clients J = {1, . . . , M, M + 1, M + 2}
having unit demands. Let w1 = 2, c1 = 1, S1 = {M + 1, M + 2}, where w2 =
c2 = M, S2 = {1, . . . , M}. The overall budget in this example is taken to be M .
The optimal solution opens the second base station satisfying exactly M clients,
while the solution obtained by the greedy algorithm opens the first base station
satisfying exactly 2 clients. The approximation ratio for this instance is M/2,
and is therefore unbounded.

Our algorithm comprises of two phases. In the first phase, the algorithm com-
putes the maximum number of base stations having a total opening cost less
than or equal to B. Since our instances are “k4k”, this is a lower bound on the
optimal solution of k4k-BCPP. Furthermore, it can be computed in linear-time
by picking base stations in non-decreasing order of their opening cost. Another
set of candidate solutions concentrates, in the second phase, on the number of
clients that can be fully satisfied by a single base station. This is also a lower
bound on the optimal solution and it is computed as the best of two possible
candidates (in a similar way to [10]). For a fixed integer � ≥ 3, the first candidate

40 D. Amzallag, J. Naor, and D. Raz

consists of all subsets of I of cardinality less than � which have cost at most B,
while the second one enumerates all feasible solutions of cardinality � having cost
at most B, and then completes each subset to a candidate solution using the
greedy algorithm. Based on both phases the algorithm outputs the candidate
solution having the maximum number of satisfied clients.

The problem of computing the optimal value of N(S), for a given set of
base stations, S, is NP-hard. In fact, this problem is a generalization of the
budgeted maximum coverage problem containing capacities as well as non-
uniform demands. Fortunately, a straightforward extension of [10] gives a (1− 1

e)-
approximation algorithm for this generalization.

Theorem 3. Algorithm 3 is a e−1
2e−1 -approximation algorithm for the k4k-

budgeted cell planning problem.

Proof. Let ñ be the solution obtained by Algorithm 3, and let n∗ be the
maximum number of satisfied clients as obtained by the optimal solution. In the
latter, n∗

1 denotes the number of clients that are satisfied by a single base station,
and n∗

2 is the number of clients satisfied by more than one base station. Finally,
we denotes I∗ to be the set of base stations opened (by the optimal solution) for
satisfying these n∗ = n∗

1 + n∗
2 clients.

Now, if n̂1 denotes the maximum number of clients that can be satisfied by a
single base station then n̂1 ≥ n∗

1. Since computing n̂1 is done using the extension
of the algorithm of [10], we have

ñ ≥
(

1− 1
e

)
n̂1. (5)

Combining the above discussion, gives

(
2− 1

e

)
ñ = ñ +

(
1− 1

e

)
ñ (6)

≥ ñ +
(

1− 1
e

)
|I∗| (7)

≥
(

1− 1
e

)
n̂1 +

(
1− 1

e

)
|I∗| (8)

≥
(

1− 1
e

)
n∗

1 +
(

1− 1
e

)
n∗

2 (9)

≥
(

1− 1
e

)
n∗ (10)

where inequality (7) follows from the fact that every set of k opened base stations
can satisfy at least k clients (as used by the first candidate of our algorithm),
inequality (8) is based on (5), and inequality (9) follows from Lemma 1. �

Finding xij ’s values. Algorithm 3 outputs a set J ′ ⊆ J of fully satisfied clients
and a set I ′ ⊆ I of base stations providing this coverage. However, the values

Coping with Interference 41

of the xij ’s are not inclusively outcome from the algorithm. Since in this setting
we are given a set of already opened base stations, these values can be efficiently
determined by any feasible solution of the following linear program (LP). Notice
that the objective function in this linear program is not important and any
feasible point will do.

max
∑
i∈I′

∑
j∈J′

xij (LP)

s.t.
∑
i∈I′

Q(i, j) ≥ dj ∀ j ∈ J ′ (11)

∑
j∈J′

xij ≤ 1 ∀ i ∈ I ′ (12)

0 ≤ xij ≤ 1 ∀ i ∈ I ′, j ∈ Si

xij = 0 ∀ i ∈ I ′, j /∈ Si

In this linear program constraints (11) ensures that every client will be fully
satisfied (notice that Q(i, j) is the same as in (3) without the need to open base
stations), while constraints (12) maintains the capacity bounds for the base
stations.

5 Conclusions and Future Work

In this paper we present a theoretical study of the budgeted cell planning, a cen-
tral complex optimization problem in planning of cellular networks. As far as we
know, no performance guarantee was given so far to this problem. We show that
although this problem is NP-hard to approximate, we can still cover all practi-
cal scenarios by adopting a very practical assumption, called the k4k-property,
satisfied by every real cellular network, and we give a fully combinatorial e−1

2e−1 -
approximation algorithm for this problem. We believe that taking capacities,
non-uniform demands, and interference into considerations makes a significant
step towards making approximation algorithms a key ingredient in practical so-
lutions to many planning and covering problems in cellular networks.

An interesting open problem that is closely related to BCPP is the all-or-
nothing demand maximization problem. In this problem we are given a set I =
{1, 2, . . . , m} of base stations that are already opened, a set J = {1, 2, . . . , n}
of clients. Each base station i ∈ I has capacity wi, and every client j ∈ J has
a profit pj and a demand dj which is allowed to be simultaneously satisfied by
more than one base station. Each base station i has a coverage area represented
by a set Si ⊆ J of clients admissible to be covered (or satisfied) by it. Let P
be an m × m × n matrix of interference for satisfying a client by several base
stations, as in BCPP. The all-or-nothing demands maximization problem asks
for a maximum-profit subset J ′ ⊆ J of clients that can be fully satisfied by I.
As one can noticed, this problem is a special case of BCPP by taking ci = 0,
and pj = 1, for every i ∈ I, j ∈ J .

42 D. Amzallag, J. Naor, and D. Raz

Acknowledgments

We would like to thank Gabi Scalosub for his comments for an earlier version of
this paper. This research was supported by REMON - Israel 4G Mobile Consor-
tium, sponsored by Magnet Program of the Chief Scientist Office in the Ministry
of Industry and Trade of Israel.

References

1. A. Ageev and M. Sviridenko. Approximation algorithms for maximum coverage
and max cut with given sizes of parts. In Proceedings of the Conference on Integer
Programming and Combinatorial Optimization, volume 1610 of Lecture Notes in
Computer Science, pages 17–30. Springer-Verlag, Berlin, 1999.

2. D. Amzallag, R. Engelberg, J. Naor, and D. Raz. Approximation algorithms for
cell planning problems. Manuscript, 2006.

3. D. Amzallag, M. Livschitz, J. Naor, and D. Raz. Cell planning of 4G cellular
networks: Algorithmic techniques, and results. In Proceedings of the 6th IEE In-
ternational Conference on 3G & Beyond (3G’2005), pages 501–506, 2005.

4. C. Chekuri, S. Khanna, and F. B. Shepherd. The all-or-nothing multicommodity
flow problem. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, pages 156–165, 2004.

5. E. D. Demaine, U. Feige, M. Hajiaghayi, and M. R. Salavatipour. Combination
can be hard: Approximability of the unique coverage problem. In Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 162–171,
2006.

6. U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45:634–652,
1998.

7. C. Glaßer, S. Reith, and H. Vollmer. The complexity of base station positiong in
cellular networks. In Workshop on Approximation and Randomized Algorithms in
Communication Networks, pages 167–177, 2000.

8. D. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Pro-
gramming, 22(2):148–162, 1982.

9. J. Kahn, N. Linial, and A. Samorodnitsky. Inclusion-exclusion : exact and approx-
imate. Combinatorica, 16:465–477, 1996.

10. S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem.
Information Processing Letters, 70:39–45, 1999.

11. N. Linial and N. Nisan. Approximate inclusion-exclusion. Combinatorica, 10:349–
365, 1990.

12. M. Sviridenko. A note on maximizing a submodular set function subject to knap-
sack constraint. Operations Research Letters, 32:41–43, 2004.

Online Dynamic Programming Speedups�

Amotz Bar-Noy1, Mordecai J. Golin2, and Yan Zhang2

1 Brooklyn College, 2900 Bedford Avenue Brooklyn, NY 11210
amotz@sci.brooklyn.cuny.edu

2 Hong Kong University of Science and Technology, Kowloon, Hong Kong
{golin,cszy}@cse.ust.hk

Abstract. Consider the Dynamic Program h(n) = min1≤j≤n a(n, j) for
n = 1, 2, . . . , N . For arbitrary values of a(n, j), calculating all the h(n)
requires Θ(N2) time. It is well known that, if the a(n, j) satisfy the
Monge property, then there are techniques to reduce the time down to
O(N). This speedup is inherently static, i.e., it requires N to be known
in advance.

In this paper we show that if the a(n, j) satisfy a stronger condition,
then it is possible, without knowing N in advance, to compute the values
of h(n) in the order of n = 1, 2, . . . , N , in O(1) amortized time per
h(n). This maintains the DP speedup online, in the sense that the time
to compute all h(n) is O(N). A slight modification of our algorithm
restricts the worst case time to be O(log N) per h(n), while maintaining
the amortized time bound. For a(n, j) that satisfy our stronger condition,
our algorithm is also simpler to implement than the standard Monge
speedup.

We illustrate the use of our algorithm on two examples from the lit-
erature. The first shows how to make the speedup of the D-median on a
line problem in an online settings. The second shows how to improve the
running time for a DP used to reduce the amount of bandwidth needed
when paging mobile wireless users.

1 Introduction

Consider the class of problems defined by

h(n) = min
1≤j≤n

a(n, j), ∀ 1 ≤ n ≤ N (1)

where the goal is to compute h(n) for 1 ≤ n ≤ N . In many applications, (1) is
a Dynamic Program (DP), in the sense that the values of a(n, j) depend upon
h(i), for some 1 ≤ i < n. In this paper, we always assume any particular a(n, j)
can be computed in O(1) time, provided that the values of h(i) it depends on
are known. For a generally defined function a(n, j), it requires Θ(N2) time to
compute all the h(n). It is well known, though [1], that if the values of a(n, j)
satisfy the Monge property (see Section 1.1), then the SMAWK algorithm [2]
can compute all the h(n), for 1 ≤ n ≤ N , in O(N) time. To be precise, if
� The research of the second and third authors was partially supported by Hong Kong

RGC CERG grant HKUST6312/04E.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 43–54, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

44 A. Bar-Noy, M.J. Golin, and Y. Zhang

1. the value of N is known in advance;
2. and for any 1 ≤ j ≤ n ≤ N , the value of a(n, j) can be computed in O(1)

time, i.e., a(n, j) does not depend on h(i);
3. and the values of a(n, j) satisfy the Monge property defined by (4),

then the SMAWK algorithm [2] can compute all of the h(n) for 1 ≤ n ≤ N in
O(N) time.

The main purpose of this paper is to consider the DP formula (1) in online
settings. By this we mean that the values of h(n) are computed in the order
n = 1, 2, . . . ,N without knowing the parameter N in advance, and the values
of a(n, j) are allowed to depend on all previously-computed values of h(i) for
1 ≤ i < n. To be precise, our main result is

Theorem 1. Consider the DP defined by (1). If

1. ∀ 1 ≤ j ≤ n ≤ N , the value of a(n, j) can be computed in O(1) time, provided
that the values of h(i) for 1 ≤ i < n are known;

2. and ∀ 1 ≤ j < n ≤ N ,

a(n, j)− a(n− 1, j) = cn + δjβn (2)

where cn, βn and δj are constants satisfying
(a) ∀ 1 < n ≤ N , βn ≥ 0;
(b) and δ1 > δ2 > · · · > δN−1,

then, there is an algorithm that computes the values of h(n) in the order n =
1, 2, . . . ,N in O(1) amortized and O(log N) worst-case time per h(n). The algo-
rithm does not know the value of N until h(N) has been computed.

We call the Condition 2 in Theorem 1 (including Conditions (a) and (b)) the
online Monge property. As we will see in Section 1.1, the online Monge property
is a stronger Monge property. The SMAWK algorithm is a Θ(N) speedup of
the computation of (1) when a(n, j) satisfy the Monge property. Theorem 1
says that if a(n, j) satisfy the online Monge property, then the same speedup
can be maintained online, in the sense that the time to compute all h(n) is still
O(N). Section 2 will give the main algorithm, which achieves the O(1) amortized
bound. In Section 2.3, we modify the algorithm a little bit to achieve the worst
case O(log N) bound. Section 3 shows two applications of this technique.

Note that the online Monge property only says that cn, βn and δj exist. It does
not say that cn, βn and δj are given. However, if δj is given, then the algorithm
will be easier to understand. So, throughout this paper we will assume we have
an extra condition:

– The values of δj can be computed in O(1) time, provided that the values of
h(i) for 1 ≤ i < j are known.

This condition is not really necessary. In Appendix A, we will show how it is
implied by other conditions in Theorem 1.

As a final note we point out that there is a body of literature already discussing
“online” problems of (1), e.g., [3,4,5,6,7]. We should clarify that the “online” in

Online Dynamic Programming Speedups 45

those papers actually had a different meaning than the one used here. More
specifically, the result they have is that if

1. the value of N is known in advance;
2. and for any 1 ≤ j ≤ n ≤ N , the value of a(n, j) can be computed in O(1)

time, provided that the values of h(i) for 1 ≤ i < j are known;
3. and the values of a(n, j) satisfy the Monge property defined by (4),

then both the Galil-Park algorithm [6] and the Larmore-Schieber algorithm [7]
can compute all of the h(n) for 1 ≤ n ≤ N in O(N) time. As we can see,
their definition of “online” is only that the a(n, j) can depend upon part of the
previously-computed values of h(i), i.e., for 1 ≤ i < j. It does not mean that
h(n) can be computed without knowing the problem size N in advance.

1.1 Relations to Monge

In this section, we briefly introduce the definition of Monge property. See the
survey [1] for more details. Consider an N × N matrix A. Denote by R(n) the
index of the rightmost minimum of row n of A, i.e.,

R(n) = max{j : An,j = min
1≤i≤N

An,i}.

A matrix A is monotone if R(1) ≤ R(2) ≤ · · · ≤ R(N), A is totally monotone if
all submatrices1 of A are monotone. The SMAWK algorithm [2] says that if A
is totally monotone, then it can compute all of the R(n) for 1 ≤ n ≤ N in O(N)
time.

For our problem, if we set

An,j =
{
a(n, j) 1 ≤ j ≤ n ≤ N
∞ otherwise (3)

then h(n) = a(n,R(n)). Hence, if we can show the matrix A defined by (3) is
totally monotone, then the SMAWK algorithm can solve our problem (offline
version) in O(N) time. Totally monotone properties are usually established by
showing a slightly stronger property, the Monge Property (also known as the
quadrangle inequality). A matrix A is Monge if ∀ 1 ≤ n < N and ∀ 1 ≤ j < N ,

An,j + An+1,j+1 ≤ An+1,j + An,j+1.

It is easy to show that A is totally monotone if it is Monge. So, for the offline
version of our problem, we only need to show that the matrix A defined by (3)
is Monge, i.e., ∀ 1 ≤ j < n < N ,

a(n, j) + a(n+ 1, j + 1) ≤ a(n+ 1, j) + a(n, j + 1). (4)

1 In this paper, submatrices can take non-consecutive rows and columns from the
original matrix, and are not necessarily square matrices.

46 A. Bar-Noy, M.J. Golin, and Y. Zhang

By the conditions in Theorem 1,

a(n+ 1, j) + a(n, j + 1)− a(n, j)− a(n+ 1, j + 1) = (δj − δj+1)βn+1 ≥ 0.

So, the matrix A defined by (3) is Monge, and the SMAWK algorithm solves the
offline problem.

Our problem is a special case of Monge. But how special a case? Referring
to Section 2.2 of [1] for more details, we see that if we only consider the finite
entries, then a matrix A is Monge if and only if ∀ An,j
= ∞,

An,j = Pn + Qj +
N∑

k=n

j∑
i=1

Fki (5)

where P and Q are vectors, and F is an N ×N matrix, called the distribution
matrix, whose entries are all nonnegative. For our problem, let δ0 = δ1. Then

a(n, j) = a(N, j)−
N∑

k=n+1

ck − δj

N∑
k=n+1

βk

= a(N, j)−
N∑

k=n+1

ck − δ0

N∑
k=n+1

βk + (δ0 − δj)
N∑

k=n+1

βk

So, in our problem,

Pn = −
N∑

k=n+1

(ck + δ0βk), Qj = a(N, j), Fki = (δi−1 − δi)βk+1,

where we define βN+1 = 0. This shows that our problem is a special case of the
Monge property where the distribution matrix has rank 1.

Conversely, if the distribution matrix F has rank 1, then the values of a(n, j)
satisfy the conditions of Theorem 1. So, Theorem 1 is really showing that the
row minima of any Monge matrix defined by a rank 1 distribution matrix can
be found online.

2 The Algorithm

In this section, we show the main algorithm that achieves the O(1) amortized
bound in Theorem 1. We will show the algorithm at step n, where the values
of h(i) have been computed for 1 ≤ i < n, and we want to compute the value
of h(n). By the conditions in Theorem 1 and the extra condition, all the values
a(n, j) and δj for 1 ≤ j ≤ n ≤ N are known.

The key concept of the algorithm is a set of straight lines defined as follows.

Definition 2. ∀ 1 ≤ j ≤ n ≤ N , we define

Ln
j (x) = a(n, j) + δj · x (6)

Online Dynamic Programming Speedups 47

So, h(n) = min1≤j≤n L
n
j (0). To compute min1≤j≤n L

n
j (x) at x = 0 efficiently, the

algorithm maintains min1≤j≤n L
n
j (x) for the entire range x ≥ 0, i.e., at step n,

the algorithm maintains the lower envelope of the set of lines {Ln
j (x) : 1 ≤ j ≤ n}

in the range x ∈ [0,∞).

2.1 The Data Structure

The only data structure used is an array, called the active-indices array, Z =
(z1, . . . , zt) for some length t. It will be used to represent the lower envelope.
It stores, from left to right, the indices of the lines that appear on the lower
envelope in the range x ∈ [0,∞). That is, at step n, if we walk along the lower
envelope from x = 0 to the right, then we will sequentially encounter the lines
Ln

z1
(x), Ln

z2
(x), . . . , Ln

zt
(x). Since δ1 > δ2 > · · · > δn, and by the properties of

lower envelopes, we have z1 < z2 < · · · < zt = n, and no line can appear more
than once in the active-indices array.

Once we have the active-indices array, computing h(n) becomes easy as h(n) =
a(n, z1). So, the problem is how to obtain the active-indices array. Inductively,
when the algorithm enters step n from step n− 1, it maintains an active-indices
array for step n− 1, which represents the lower envelope of the lines {Ln−1

j (x) :
1 ≤ j ≤ n − 1}. So, the main part of the algorithm is to update the old active-
indices array to the new active-indices array for {Ln

j (x) : 1 ≤ j ≤ n}.
Before introducing the algorithm, we introduce another concept, the break-

point array, X = (x0, . . . , xt), where x0 = 0, xt = ∞ and xi (1 ≤ i < t)
is the x-coordinate of the intersection point of lines Ln

zi
(x) and Ln

zi+1
(x). The

break-point array is not stored explicitly, since for any i, the value of xi can be
computed in O(1) time, given the active-indices array.

2.2 The Main Algorithm

In step n, we need to consider n lines {Ln
j (x) : 1 ≤ j ≤ n}. The algorithm will

first deal with the n − 1 lines {Ln
j (x) : 1 ≤ j ≤ n − 1}, and then add the last

line Ln
n(x). Figure 1 illustrates the update process by an example. Figure 1(a)

shows what we have from step n − 1, Figure 1(b) shows the considerations for
the first n− 1 lines, and Figure 1(c) shows the adding of the last line.

Deal with the first n−1 lines. For the first n−1 lines {Ln
j (x) : 1 ≤ j ≤ n−1},

the key observation is the following lemma.

Lemma 3. ∀ 1 < n ≤ N and ∀ x,

Ln
j (x) = Ln−1

j (x+ βn) + cn, ∀ 1 ≤ j ≤ n− 1.

Proof. By (2) and (6),

Ln
j (x) = [a(n, j)− δj βn] + δj (x+ βn)

= [a(n− 1, j) + cn] + δj (x+ βn)
= Ln−1

j (x+ βn) + cn.

48 A. Bar-Noy, M.J. Golin, and Y. Zhang

x1 x2 x3 x4Ln−1
1 (x)

Ln−1
2 (x)

Ln−1
3 (x)

Ln−1
4 (x)

Ln−1
5 (x)

Ln−1
6 (x)

Ln−1
7 (x)

1

2
4

5

7

x = 0

x1 x2

1

2
4

5

7

x = 0

4
5

7

x = −βn

cn

cn

x1 x2

1

2
4 5

7

x = 0

4 5

x = −βn

cn

cn

Ln
8 (x)

8

7

(a)

(b)

(c)

Fig. 1. The update of the active-indices array from Step n− 1 to Step n, where n = 8.
The thick solid chains are the lower envelopes. Figure (a) shows the lower envelope
for the lines {Ln−1

j (x) : 1 ≤ j ≤ n − 1}, Figure (b) shows the lower envelope for the
lines {Ln

j (x) : 1 ≤ j ≤ n − 1}, and Figure (c) shows the lower envelope for the lines
{Ln

j (x) : 1 ≤ j ≤ n}. The numbers beside the line segments are the indices of the lines.
The active-indices array changes from (a)(1, 2, 4, 5, 7), to (b)(4, 5, 7), then to (c)(4, 5, 8).

Lemma 3 says that if we translate the line Ln−1
j (x) to the left by βn and upward

by cn, then we obtain the line Ln
j (x). The translation is independent of j, for

1 ≤ j ≤ n− 1. So,

Corollary 4. The lower envelope of the lines {Ln
j (x) : 1 ≤ j ≤ n − 1} is the

translation of the lower envelope of {Ln−1
j (x) : 1 ≤ j ≤ n− 1} to the left by βn

and upward by cn.

As an example, see Figure 1, (a) and (b). From Figure 1(a) to 1(b), the entire
lower envelope translates to the left by βn and upward by cn.

Online Dynamic Programming Speedups 49

We call an active-index zi negative if the part of Ln
zi

(x) that appears on the
lower envelope is completely contained in the range x ∈ (−∞, 0]. By Corollary 4,
to obtain the active-indices array for {Ln

j (x) : 1 ≤ j ≤ n−1} from the old active-
indices array, we only need to delete those active-indices who becomes negative
due to the translation. This can be done by a simple sequential scan. We scan
the old active-indices array from left to right, check each active-index whether it
becomes negative. If it is, we delete it. As soon as we find the first active-index
that is nonnegative, we can stop the scan, since the rest of the indices are all
nonnegative.

To be precise, we scan the old active-indices array from z1 to zt. For each
zi, we compute xi, the right break-point of the segment zi. If xi < 0, then
zi is negative. Let zmin be the first active-index that is nonnegative, then the
active-indices array for {Ln

j (x) : 1 ≤ j ≤ n− 1} is (zmin, . . . , zt).

Adding the last line. We now add the line Ln
n(x). Recall Condition (a) in The-

orem 1. Since Ln
n(x) has the smallest slope over all lines, it must be the rightmost

segment on the lower envelope. And since no line can appear on the lower enve-
lope more than once, we only need to find the intersection point between Ln

n(x)
and the lower envelope of {Ln

j (x) : 1 ≤ j ≤ n − 1}. Assume they intersect on
segment zmax, then the new lower envelope should be (zmin, . . . , zmax, n). See
Figure 1(c), in the example, zmax = 5.

To find zmax, we also use a sequential scan, but from right to left. We scan
the active-indices array from zt to zmin. For each zi, we compute xi−1, the left
break-point of segment zi, and compare the values of Ln

n(xi−1) and Ln
zi

(xi−1). If
Ln

n(xi−1) is smaller, then zi is deleted from the active-indices array. Otherwise,
we find zmax.

The running time. The two sequential scans use amortized O(1) time per
step, since each line can be added to or deleted from the active-indices array at
most once.

2.3 The Worst-Case Bound

To achieve the worst-case bound, we can use binary search to find zmin and zmax.
Since for a given index z and value x the function Ln

z (x) can be computed in
O(1) time, the binary search takes O(log N) time worst case.

To keep both the O(1) amortized time and the O(log N) worst-case time, we
run both the sequential search and the binary search in parallel, interleaving
their steps, stopping when the first one of the two searches completes.

3 Applications

We will now see two applications. Both will require multiple applications of our
technique, and both will be in the form

50 A. Bar-Noy, M.J. Golin, and Y. Zhang

H(d, n) = min
d−1≤j≤n−1

(
H(d− 1, j) + W

(d)
n,j

)
, (7)

where the value of W
(d)
n,j can be computed in O(1) time, and the values ofH(d, n)

for d = 0 or n = d are given. The goal is to compute H(D,N). Setting

a(d)(n, j) = H(d− 1, j) + W
(d)
n,j ,

for each fixed d (1 ≤ d ≤ D), the values of a(d)(n, j) satisfy the online Monge
property in Theorem 1, i.e.,

a(d)(n, j)− a(d)(n− 1, j) = W
(d)
n,j −W

(d)
n−1,j = c(d)

n + δ
(d)
j β(d)

n . (8)

where δ
(d)
j decreases as j increases, and β

(d)
n ≥ 0.

As before, we want to compute H(d, n) in online fashion, i.e., as n increases
from 1 to N , at step n, we want to compute the set Hn = {H(d, n) | 1 ≤ d ≤ D}.
By Theorem 1, this can be done in O(D) amortized time per step. This gives a
total of O(DN) time to compute H(D,N), while the naive algorithm requires
O(DN2) time.

3.1 D-Medians on a Directed Line

The first application comes from [8]. It is the classic D-median problem when
the underlying graph is restricted to a directed line. In this problem we have N
points (users) v1 < v2 < · · · < vN , where we also denote by vi the x-coordinate
of the point. Each user vi has a weight, denoted by wi, representing the amount
of requests. We want to choose a subset S ⊆ V as servers (medians) to provide
service to the users’ requests. The line is directed, in the sense that the requests
from a user can only be serviced by a server to its left. So, v1 must be a server.
Denote by �(vi, S) the distance from vi to the nearest server to its left, i.e.,
�(vi, S) = min{vi − vl | vl ∈ S, vl ≤ vi}. The objective is to choose D servers
(not counting v1) to minimize the cost, which is

∑N
i=1 wi�(vi, S).

The problem can be solved by the following DP. Let H(d, n) be the minimum
cost of servicing v1, v2, . . . , vn using exactly d servers (not counting v1). Let
Wn,j =

∑n
l=j+1 wl(vl − vj+1) be the cost of servicing vj+1, . . . , vn by server

vj+1. Then

H(d, n) =

⎧⎪⎨⎪⎩
0 n = d
Wn,0 d = 0, n ≥ 1

min
d−1≤j≤n−1

(H(d− 1, j) + Wn,j), 1 ≤ d < n

The optimal cost we are looking for is H(D,N).
To see the online Monge property, since

Wn,j −Wn−1,j = wn(vn − vj+1),

Online Dynamic Programming Speedups 51

we have cn = wnvn, δj = −vj+1 and βn = wn, satisfying (8). So, Theorem 1
will solve the online problem in O(D) amortized time per step. Hence, the total
time to compute H(D,N) is O(DN).

[8] also gives an O(DN) time algorithm, by observing the standard Monge
property and applying the SMAWK algorithm. The algorithm in this paper
has smaller constant factor in the O(·) notation, and hence is more efficient
in practice. Further more, the online problem makes sense in this situation.
It is known as the one-sided online problem. In this problem, a new user is
added from right in each step. When a new user comes, our algorithm recom-
putes the optimal solution in O(D) time amortized and O(D log N) time worst
case.

We note that the corresponding online problem for solving the D-median
on an undirected line was treated in [9], where a problem-specific solution was
developed. The technique in this paper is a generalization of that one.

3.2 Wireless Mobile Paging

The second application comes from wireless networking [10]. In this problem, we
are given N regions, called the cells, and there is a user somewhere. We want to
find which cell contains the user. To do this, we can only query a cell whether
the user is in or not, and the cell will answer yes or no. For each cell i, we know
in advance the probability that it contains the user, denote it by pi. We assume
p1 ≥ p2 ≥ · · · ≥ pN . We also approximate the real situation by assuming the
cells are disjoint, so pi is the probability that cell i contains the user and no
other cell does.

There is a tradeoff issue between the delay and the bandwidth requirement.
For example, consider the following two strategies. The first strategy queries all
cells simultaneously, while the second strategy consists of N rounds, querying
the cells one by one from p1 to pN , and stops as soon as the user is found.
The fist strategy has the minimum delay, which is only one round, but has
the maximum bandwidth requirement since it queries all N cells. The second
strategy has the maximum worst case delay of N rounds, but the expected
bandwidth requirement is the minimum possible, which is

∑N
i=1 ipi queries. In

the tradeoff, we are given a parameter D, which is the worst case delay that can
be tolerated, and we are going to find an optimal strategy that minimize the
expected number of queries.

It is obvious that a cell with larger pi should be queried no later than one with
smaller pi. So, the optimal strategy actually breaks the sequence p1, p2, . . . , pN

into D contiguous subsequences, and queries one subsequence in each round. Let
0 = r0 < r1 < · · · < rD = N , and assume in round i, we query the cells from
pri−1+1 to pri . Recall that the cells are disjoint. The expected number of queries,
defined as the cost, is

D∑
i=1

ri

⎛⎝ ri∑
l=ri−1+1

pl

⎞⎠ . (9)

52 A. Bar-Noy, M.J. Golin, and Y. Zhang

[10] developed a DP formulation to solve the problem. It is essentially the
following DP. Let H(d, n) be the optimal cost for querying cells p1, . . . , pn using
exactly d rounds. Denote Wn,j = n

∑n
l=j+1 pl the contribution to (9) of one

round that queries pj+1, . . . , pn. Then

H(d, n) =

⎧⎪⎨⎪⎩
∑n

l=1 lpl n = d
∞ d = 0, n ≥ 1

min
d−1≤j≤n−1

(H(d− 1, j) + Wn,j), 1 ≤ d < n

[10] applied the naive approach to solve the DP in O(DN2) time. Actually, this
DP satisfies the online Monge property. Since

Wn,j −Wn−1,j = npn +
n−1∑

l=j+1

pl,

we can set cn = npn +
∑n−1

l=1 pl, δj = −
∑j

l=1 pl and βn = 1, satisfying (8).
So, the DP can be solved in O(DN) time, using either the SMAWK algorithm
or the technique in this paper. However, in this problem, there is no physical
interpretation to the meaning of the online situation. But, due to the simplicity
of our algorithm, it runs faster than the SMAWK algorithm in practice, as
suggested by the experiments in [11], and is therefore more suitable for real time
applications.

References

1. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in opti-
mization. Discrete Applied Mathematics 70(2) (1996) 95–161

2. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P.W., Wilber, R.E.: Geometric
applications of a matrix-searching algorithm. Algorithmica 2 (1987) 195–208

3. Wilber, R.: The concave least-weight subsequence problem revisited. Journal of
Algorithms 9(3) (1988) 418–425

4. Eppstein, D., Galil, Z., Giancarlo, R.: Speeding up dynamic programming. In:
Proceedings of the 29th Annual Symposium on Foundations of Computer Science.
(1988) 488–496

5. Galil, Z., Giancarlo, R.: Speeding up dynamic programming with applications to
molecular biology. Theoretical Computer Science 64(1) (1989) 107–118

6. Galil, Z., Park, K.: A linear-time algorithm for concave one-dimensional dynamic
programming. Information Processing Letters 33(6) (1990) 309–311

7. Larmore, L.L., Schieber, B.: On-line dynamic programming with applications to
the prediction of RNA secondary structure. Journal of Algorithms 12(3) (1991)
490–515

8. Woeginger, G.J.: Monge strikes again: Optimal placement of web proxies in the
Internet. Operations Research Letters 27(3) (2000) 93–96

9. Fleischer, R., Golin, M.J., Zhang, Y.: Online maintenance of k-medians and k-
covers on a line. Algorithmica 45(4) (2006) 549–567

Online Dynamic Programming Speedups 53

10. Krishnamachari, B., Gau, R.H., Wicker, S.B., Haas, Z.J.: Optimal sequential pag-
ing in cellular wireless networks. Wireless Networks 10(2) (2004) 121–131

11. Bar-Noy, A., Feng, Y., Golin, M.J.: Efficiently paging mobile users under delay
constraints. Unpublished manuscript (2006)

A Dropping the Extra Condition

This appendix will show how to drop the condition that

– the values of δj can be computed in O(1) time, provided that the values of
h(i) for 1 ≤ i < j are known.

In real applications, this doesn’t seem to be an issue. For example, in both of the
applications in Section 3, the value of δj can easily be computed in O(1) time
when needed, and in neither of the applications does δj depend on the previously-
computed values of h(i) for 1 ≤ i < j. It is a theoretical issue, though, so in this
appendix, we will show how to dispense with the condition.

Recall (2) from Theorem 1. It is true that we cannot compute δn from other
values available at step n, since the constraints containing δn will only appear
from step n+ 1. However, it suffices to compute δn at step n+ 1, since we can
modify the algorithm a little bit. The only place that uses δn in step n of the
algorithm is in the addition of new line Ln

n(x) to the lower envelope. After that,
the algorithm computes h(n) by evaluating the value of the lower envelope at
x = 0, and then precedes to step n+ 1. So, we can postpone the addition of line
Ln

n(x) to the beginning of step n+ 1, after we compute δn. To compute h(n) at
step n, we can evaluate the value of the lower envelope without Ln

n(x) at x = 0,
compare it with Ln

n(0) = a(n, n), and take the smaller of the two. Hence, what
is left is to show

Lemma 5. A feasible value of δn can be computed in O(1) time at step n+ 1.

Proof. We will show an algorithm that computes cn and βn at step n, and
computes δn at step n+1. There are actually many feasible solutions of cn, βn and
δj for (2). Consider a particular solution cn, βn and δj . If we set c′n = cn + xβn,
β′

n = βn and δ′j = δj − x for some arbitrary value x, then the new solution c′n,
β′

n and δ′j still satisfies (2). This gives us the degree of freedom to choose δ1. We
choose δ1 = 0 and immediately get

cn = a(n, 1)− a(n− 1, 1), ∀ 1 < n ≤ N.

So, we can compute cn at step n.
What is left is to compute βn and δj . The constraints (2) become ∀ 1 < j <

n ≤ N ,
δjβn = a(n, j)− a(n− 1, j)− cn. (10)

β2 does not show up in the constraints (10). In fact, the value of β2 will not affect
the algorithm. So, we can choose an arbitrary value for it, e.g. β2 = 0. All other
values, βn (3 ≤ n ≤ N) and δj (2 ≤ j ≤ N), appear in the constraints (10),

54 A. Bar-Noy, M.J. Golin, and Y. Zhang

but we still have one degree of freedom. Consider a particular solution βn and
δj to the constraints (10). If we set β′

n = βn/x, and δ′j = δj · x for some x > 0,
then we obtain another feasible solution. So, we can choose δ2 to be an arbitrary
negative value, e.g. δ2 = −1. The rest is easy. In step n, we can compute βn by

βn = [a(n, 2)− a(n− 1, 2)− cn]/δ2,

and in step n+ 1, we compute δn by

δn = [a(n+ 1, n)− a(n, n)− cn+1]/βn+1.

Hence, the lemma follows.

Covering Many or Few Points with Unit Disks�

Mark de Berg1, Sergio Cabello2, and Sariel Har-Peled3

1 Department of Computer Science, TU Eindhoven, the Netherlands
2 Department of Mathematics, FMF, University of Ljubljana, and Department of

Mathematics, IMFM, Slovenia
3 Department of Computer Science, University of Illinois, USA

Abstract. Let P be a set of n weighted points. We study approximation
algorithms for the following two continuous facility-location problems.

In the first problem we want to place m unit disks, for a given constant
m � 1, such that the total weight of the points from P inside the union
of the disks is maximized. We present a deterministic algorithm that can
compute, for any ε > 0, a (1− ε)-approximation to the optimal solution
in O(n log n + ε−4m log2m(1/ε)) time.

In the second problem we want to place a single disk with center in
a given constant-complexity region X such that the total weight of the
points from P inside the disk is minimized. Here we present an algo-
rithm that can compute, for any ε > 0, with high probability a (1 + ε)-
approximation to the optimal solution in O(n(log3 n + ε−4 log2 n)) ex-
pected time.

1 Introduction

Let P be a set of n points in the plane, where each point p ∈ P has a given
weight wp > 0. For any P ′ ⊆ P , let w(P ′) =

∑
p∈P ′ wp denote the sum of the

weights over P ′. We consider the following two geometric optimization problems:

– M(P,m). Here we are given a weighted point set P and a parameterm, where
m is an integer constant with m � 1. The goal is to place m unit disks that
maximize the sum of the weights of the covered points. With a slight abuse
of notation, we also use M(P,m) to denote the value of an optimal solution,
that is,

M(P,m) = max {w(P ∩ U) | U is the union of m unit disks} .
– min(P,X). Here we are given a weighted point set P and a region X of

constant complexity in the plane. The goal is to place a single unit disk with
center in X that minimizes the sum of the weights of the covered points.
Note that the problem is not interesting if X = R2. We use min(P,X) as the
value of an optimal solution, that is,

min(P,X) = min {w(P ∩D) | D is a unit disk whose center is in X} .
� MdB was supported by the Netherlands’ Organisation for Scientific Research (NWO)

under project no. 639.023.301. SC was partially supported by the European Commu-
nity Sixth Framework Programme under a Marie Curie Intra-European Fellowship,
and by the Slovenian Research Agency, project J1-7218.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 55–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 M. de Berg, S. Cabello, and S. Har-Peled

The problems under consideration naturally arise in the context of locational
analysis, namely when considering placement of facilities that have a fixed area of
influence, such as antennas or sensors. M(P,m) models the problem of placing
m of such new facilities that maximize the number of covered clients, while
min(P,X) models the placement of a single obnoxious facility. min(P,X) also
models the placement of a facility in an environment of obnoxious points.

Related work and other variants. Facility location has been studied extensively
in many different variants and it goes far beyond the scope of our paper to
review all the work in this area. We confine ourselves to discussing the work
that is directly related to our variant of the problem. For a general overview of
facility-location problems in the plane, we refer to the survey by Plastria [16].

The problem M(P,m) for m = 1 was introduced by Drezner [10]. Later
Chazelle and Lee [7] gave an O(n2)-time algorithm for this case. An approxima-
tion algorithm has also been given: Agarwal et al. [1] provided a Monte-Carlo
(1− ε)-approximation algorithm for M(P, 1) when P is an unweighted point set.
If we replace each point p ∈ P by a unit disk centered at p, then M(P, 1) is
reduced to finding a point of maximum depth in the arrangement of disks. This
implies that the recent results of Aronov and Har-Peled [2] give a Monte-Carlo
(1− ε)-approximation algorithm that runs in O(nε−2 logn) time. Both the run-
ning time and the approximation factor hold with high probability. Although
the algorithm is described for the unweighted case, it can be extended to the
weighted case, giving an O(nε−2 logn log(n/ε)) time algorithm.

Somewhat surprisingly, the problem M(P,m) seems to have not been studied
so far for m > 1. For m = 2, however, Cabello et al. [4] have shown how to
solve a variant of the problem where the two disks are required to be disjoint.
(This condition changes the problem significantly, because now issues related to
packing problems arise.) Their algorithm runs in O(n8/3 log2 n) time.

The problem min(P,X) was first studied by Drezner and Wesolowsky [11], who
gave an O(n2)-time algorithm. Note that if as before we replace each point by
a unit disk, the problem min(P,X) is reduced to finding a point with minimum
depth in an arrangement of disks restricted toX . This means that for unweighted
points sets, we can use the results of Aronov and Har-Peled [2] to get a (1 +
ε)-approximation algorithm for min(P,X) in O(nε−2 logn) expected time. For
technical reasons, however, this algorithm cannot be trivially modified to handle
weighted points.

The extension of min(P,X) to the problem of placing of m unit disks, without
extra requirements, would have a solution consisting of m copies of the same
disk. Hence, we restrict our attention to the case m = 1. (Following the paper
by Cabello et al. [4] mentioned above one could study this problem under the
condition that the disks be disjoint, but in the current paper we are interested
in possibly overlapping disks.)

There are several papers studying these problems for other shapes than unit
disks. The problem min(P,X) for unit squares—this problem was first considered
by Drezner and Wesolowsky [11]—turns out to be significantly easier than for
disks and one can get subquadratic exact algorithms: Katz, Kedem, and Segal

Covering Many or Few Points with Unit Disks 57

[13] gave an optimal O(n log n) algorithm that computes the exact optimum.
For disks this does not seem to be possible: Aronov and Har-Peled [2] showed
that for disks min(P,X) and also M(P, 1) are 3SUM-HARD [12], that is, these
problems belong to a class of problems for which no subquadratic algorithms
are known. (For some problems from this class, an Ω(n2) lower bound has been
proved in a restricted model of computation.) The problem M(P, 1) has also
been studied for other shapes [1]. We will limit our discussion to disks from now
on. Our algorithms can be trivially modified to handle squares, instead of disks,
or other fixed shapes of constant description; only the logarithmic factors are
affected.

Our results. As discussed above, M(P,m) is 3SUM-HARD for m = 1 and also
min(P,X) is 3SUM-HARD. Since we are interested in algorithms with near-linear
running time we therefore focus on approximation algorithms. For M(P,m) we
aim to achieve (1− ε)-approximation algorithms; given a parameter ε > 0, such
algorithms compute a set of m disks such that the total weight of all points
in their union is at least (1 − ε)M(P,m). Similarly, for min(P,X) we aim for
computing a disk such that the total weight of the covered points is at most
(1+ ε)min(P,X). When stating our bounds we consider m � 1 to be a constant
and we assume a model of computation where the floor function takes constant
time.

For M(P,m) with m � 1 we give a deterministic (1− ε)-approximation algo-
rithm that runs in O(n logn + nε−4m log2m(1/ε)) time. As a byproduct of our
approach, we also consider an exact algorithm to compute M(P,m); it runs in
O(n2m−1 logn) time. For m = 1, we improve [1,2]. For m > 1, we obtain the
first near-linear time algorithms.

For min(P,X) we give a randomized algorithm that runs in O(n(log3 n +
ε−4 log2 n)) expected time and gives a (1+ε)-approximation with high probabil-
ity. This is the first near-linear time approximation algorithm for this problem
that can handle weighted points.

2 Notation and Preliminaries

It will be convenient to define a unit disk as a closed disk of diameter 1. Let
s :=

√
2/2, so that a square of side s has diagonal of unit length and can be

covered by a unit disk, and let Δ = 3ms. (Recall that m is the number of disks
we want to place.) We assume without loss of generality that no coordinate of
the points in P is a multiple of s. For a positive integer I we use the notation
[I] to denote the set {0, 1, 2, . . . , I}. For a pair (a, b) ∈ [3m]2, we use G(a,b) to
denote the grid of spacing Δ such that (as, bs) is one of the grid vertices, and
we define G := G(0,0). We consider the cells of a grid to be open. Finally, we let
L(a,b) denote the set of grid lines that define G(a,b). Thus L(a,b) is given by

{(x, y) ∈ R2 | y = bs+k ·Δ and k ∈ Z}∪{(x, y) ∈ R2 | x = as+k ·Δ and k ∈ Z}

The following lemma follows from an easy counting argument.

58 M. de Berg, S. Cabello, and S. Har-Peled

Lemma 1. Let U := D1 ∪ · · ·∪Dm be the union of m unit disks. There is some
(a, b) ∈ [3m]2 such that L(a,b) does not intersect U so that each disk Di is fully
contained in a cell of G(a,b). ��
Throughout the paper we use the expression with high probability, or whp for
short, to indicate that, for any given constant c > 0, the failure probability can
be bounded by n−c. (In our algorithms, the value c affects the constant factor
in the O-notation expressing the running time.)

An integer-weighted point set Q is a weighted point set with integer weights.
We can see Q as a multiset where each point is repeated as many times as its
weight. We use P for arbitrary weighted point sets and Q for integer-weighted
point sets. A p-sample R of Q, for some 0 � p � 1 is obtained by adding each
point of the multiset Q to R with probability p, independently. If R is a p-sample
of Q and p · w(Q) � c logn, for an appropriate constant c, then it follows from
Chernoff bounds that R has Θ(p · w(Q)) points whp.

3 Approximation Algorithms for M(P, m)

Our algorithm uses (1/r)-approximations [5,6]. In our application they can be
defined as follows. Let U be the collection of sets U ⊂ R2 that are the union of
m unit disks, and let P be a weighted point set. A weighted point set A is a
(1/r)-approximation for P if for each U ∈ U we have: |w(U ∩A)− w(U ∩ P)| �
w(P)/r. The following result is due to Matoušek [15].

Lemma 2. Let P be a weighted point set with n points and 1 � r � n. We can
construct in O(n(r2 log r)2m) time a (1/r)-approximation A for P consisting of
O(r2 log r) points. ��
At first sight it may seem that this solves our problem: compute a (1/r)-
approximation for r = 1/ε, and solve the problem for the resulting set of
O(ε−2 log(1/ε)) points. Unfortunately, this is not true: the error in the approx-
imation is w(P)/r, not w(U ∩ P)/r. Hence, when w(P) is significantly larger
than w(U ∩ P) we do not get a good approximation. Indeed, to obtain a good
approximation we need to choose r = w(P)/(ε ·M(P,m)). But now r may be-
come quite large—in fact Θ(n) in the worst case—and it seems we do not gain
anything. Nevertheless, this is the route we take. The crucial fact is that, even
though the size of the approximation may be Θ(n), we can still gain something:
we can ensure that any cell of G = G(0, 0) contains only a few points. This will
allow us to compute the optimal solution within a cell quickly. By combining
this with a dynamic-programming approach and using several shifted grids, we
can then obtain our result. We start with a lemma guaranteeing the existence
of an approximation with a few points per grid cell.

Lemma 3. Let 0 < ε < 1 be a parameter and let P be a set with n weighted
points. Let r := w(P)/(ε·M(P,m)); note that the value of r is not known. We can
find in O(n log n+nε−4m log2m(1/ε)) time a (1/2r)-approximation A for P con-
sisting of at most n points and such that each cell of G contains O(ε−2 log(1/ε))
points from A.

Covering Many or Few Points with Unit Disks 59

Proof. Let C be the collection of cells from G that contain some point of P . For
a cell C ∈ C, define PC := P ∩C. Set r′ := 72m2/ε. For each cell C ∈ C, compute
a (1/r′)-approximation AC for PC . We next show that the set A :=

⋃
C∈C AC is

a (1/2r)-approximation for P with the desired properties.
For any cell C we have w(PC) � 9m ·M(P,m) because C can be decomposed

into 9m rectangles of size s × ms, and for each of these rectangles R we have
w(R ∩ P) � M(P,m). Since AC is a (1/r′)-approximation for PC , we therefore
have for any U ∈ U ,

|w(U ∩AC)− w(U ∩ PC)| � w(PC)
r′

� 9m ·M(P,m)
72m2/ε

=
ε

8m
·M(P,m).

A unit disk of U ∈ U can intersect at most 4 cells of G, and therefore any U ∈ U
can intersect at most 4m cells of G. If CU denotes the cells of G intersected by
U , we have |CU | � 4m, so

|w(U ∩A)− w(U ∩ P)| =
∣∣∣∣∣ ∑
C∈CU

(w(U ∩AC)− w(U ∩ PC))

∣∣∣∣∣
�
∑

C∈CU

|w(U ∩AC)− w(U ∩ PC)|

�
∑

C∈CU

ε

8m
·M(P,m) � (ε/2) ·M(P,m).

We conclude that A is indeed a (1/2r)-approximation for P . For constructing
the set A, we can classify the points P by cells of G in O(n log n) time, and then
for each non-empty cell C apply Lemma 2 to get a (1/r′)-approximation AC for
PC . Since m is a fixed constant, we have r′ = O(1/ε), and according to Lemma 2,
AC will contain O((r′)2 log(r′)) = O(ε−2 log(1/ε)) points. Also, computing AC

takes O(|PC | · (r′2 log r′)2m) = O(|PC | · (ε−2 log(1/ε))2m) time, and adding the
time over all cells C ∈ C, we obtain the claimed running time. ��

It is not hard to show that choosing the value of r as in Lemma 3 indeed leads
to a (1− ε)-approximation.

Lemma 4. Let 0 < ε < 1 be a parameter and let P be a set with n weighted
points. Let A be a (1/2r)-approximation for P , where r = w(P)/(ε ·M(P,m)). If
U∗

A is an optimal solution for M(A,m), then w(P ∩U∗
A) � (1− ε) ·M(P,m). ��

It remains to find an optimal solution U∗
A for A. For a point set B, an integer

m, and a cell C, define M(B,m,C) to be the maximum sum of the weights
of B that m disks inside the cell C can cover. Let us assume that we have
an algorithm Exact(B,m,C)—later we will provide such an algorithm—that
finds the exact value M(B,m,C) in T (k,m) time. For technical reasons, we also
assume that T (k,m) has the following two properties: T (k, j) � T (k,m) for
j � m and T (k,m) is superlinear but polynomially bounded for any fixed m.
The next lemma shows that we can then compute the optimal solution for A
quickly, using a dynamic-programming approach.

60 M. de Berg, S. Cabello, and S. Har-Peled

Lemma 5. Let A be a point set with at most n points such that each cell of G
contains at most k points. We can find M(A,m) in O(n log n+ (n/k) · T (k,m))
time.

Proof. For each (a, b) ∈ [3m]2, let M(a,b)(A,m) be the optimal weight we can
cover with m unit disks that are disjoint from L(a,b). We have M(A,m) =
max(a,b)∈[3m]2 M(a,b)(A,m) by Lemma 1. We will show how to compute each
M(a,b)(A,m) in O(n log n + (n/k) · T (k,m)) time, which proves our statement
becausem2 = O(1). First we give the algorithm, and then discuss its time bound.

Consider a fixed (a, b) ∈ [3m]2. Let C = {C1, . . . , Ct} be the cells of G(a,b)

that contain some point from P ; we have |C| = t � n. For any cell Ci ∈ C, define
Ai = A ∩ Ci.

For each cell Ci ∈ C and each j ∈ {1, . . . ,m}, compute M(Ai, j, Ci) by calling
the procedure Exact(Ai, j, Ci). From the values M(Ai, j, Ci) we can compute
M(a,b)(A,m) using dynamic programming across the cells of C, as follows. Define
Bi = A1 ∪ · · · ∪Ai. We want to compute M(a,b)(Bi, j) for all i, j. To this end we
note that an optimal solution M(a,b)(Bi, j) will have � disks inside Ai, for some
0 � � � j, and the remaining j − � disks spread among the cells C1, . . . , Ci−1.
This leads to the following recursive formula:

M(a,b)(Bi, j) =
{

M(A1, j, C1) if i = 1
max0���j{M(Ai, �, Ci) + M(a,b)(Bi−1, j − �)} otherwise

Since M(a,b)(Bt,m) = M(a,b)(A,m), we end up computing the desired value
M(a,b)(A,m). This finishes the description of the algorithm.

The time used to compute M(a,b)(A,m) can be bounded as follows. Firstly,
observe that constructing Ai for all Ci ∈ C takes O(n log n) time. For computing
the values M(Ai, j, Ci) for all i, j we need time

∑
Ci∈C

m∑
j=1

T (|Ai|, j) �
∑
Ci∈C

m · T (|Ai|,m) = O

(∑
Ci∈C

T (|Ai|,m)

)
,

where the first inequality follows because for j � m we have T (k, j) � T (k,m),
and the second one follows since m is a constant. We have |Ai| � 4k for any
Ci ∈ C because Ci intersects at most 4 cells of G. Moreover, because T (k,m) is
superlinear in k for fixed m, the sum is maximized when the points concentrate
in as few sets Ai as possible. Therefore, the needed time can be bounded by

O

(∑
Ci∈C

T (|Ai|,m)

)
� O

⎛⎝	n/4k
∑
i=1

T (4k,m)

⎞⎠ = O((n/k) · T (k,m)),

where we have used that T (4k,m) = O(T (k,m)) because T is polynomially
bounded. Once we have the values M(Ai, j, Ci) for all i, j, the dynamic program-
ming requires computing O(tm) = O(n) values M(a,b)(Bi, j), and each element
requires O(m) = O(1) time. Therefore, the dynamic programming takes O(n)
time. We conclude that finding M(a,b)(A,m) takes O(n logn + (n/k) · T (k,m))
time for any (a, b) ∈ [3m]2. ��

Covering Many or Few Points with Unit Disks 61

Putting everything together, we obtain the following result.

Lemma 6. For any weighted point set P with n points, we can find in time
O(n log n + nε−4m log2m(1/ε) + (n/k) · T (k,m)) a set of m disks that cover a
weight of at least (1− ε)M(P,m), where k = O(ε−2 log(1/ε)).

Proof. Given P and a parameter ε, consider the (unknown) value r = w(P)
ε·M(P,m) .

We use Lemma 3 to compute a point set A with at most n points and such that
A is a (1/2r)-approximation for P and any cell of G contains O(ε−2 log(1/ε))
points.

We then use Lemma 5 to find an optimal solution U∗
A for M(A,m). It takes

O(n log n + (n/k) · T (k,m)) time, where k = O(ε−2 log(1/ε)). From Lemma 4,
we know that w(U∗

A ∩ P) � (1− ε)M(P,m), and the result follows. ��

Theorem 2 below states there is an algorithm for the exact problem that uses
T (k,m) = O(k2m−1 log k) time for m > 1. For m = 1, we have T (k, 1) = O(k2)
because of Chazelle and Lee [7]. We can then use the previous lemma to obtain
our final result.

Theorem 1. Let m � 1 be a fixed positive integer constant. Given a parameter
0 < ε < 1 and a weighted point set P with n points, we can find a set of
m disks that cover a weight of at least (1 − ε)M(P,m) in time O(n logn +
nε−4m log2m(1/ε)) time. ��

Exact algorithms for M(P,m,C). We want to find the set of m disks contained
in a cell C of a grid that maximize the sum of the weights of the covered points.
Let X be the set of possible centers for a unit disk contained in C—the domain
X is simply a square with the same center as C and of side length Δ− 1 instead
of Δ.

For a point p ∈ P , let Dp be the unit disk centered at p. The weight of Dp

is wp, the weight of p. Let DP := {Dp : p ∈ P} be the set of all disks defined
by P . For a point q ∈ R2 and a set D of weighted disks, we define depth(q,D) to
be the sum of the weights of the disks from D that contain q. Let A denote the
arrangement induced by the disks from DP . For any point q inside a fixed cell c
of A, the function depth(q,DP) is constant; we denote its value by depth(c,DP).
Because each disk Dp has the same size, the arrangementA can be constructed in
O(n2) time [7]. Moreover, a simple traversal ofA allows us to compute depthP (c)
for all cells c ∈ A in O(n2) time.

Let VA be the set of vertices of A, let VX be the intersection points of the
boundary of X with the boundary of some disk Dp, p ∈ P , and let Vleft be set of
leftmost points from each disk Dp, p ∈ P . Finally, let V = (VA ∪ VX ∪ Vleft)∩X .
See Figure 1, left. If V = ∅, thenX is contained in some cell ofA and the problem
can trivially be solved. Otherwise we have

M(P,m,C) = max {w(P ∩ U) | U union of m unit disks with centers at V } ,

that is, we only need to consider disks whose centers are in V . Based on this
observation, we can solve M(P,m,C) for m > 1. We first consider the case
m = 2.

62 M. de Berg, S. Cabello, and S. Har-Peled

Fig. 1. Left: Example showing the points V . The dots indicate VA ∩ X, the squares
indicate VX , and the crosses indicate Vleft ∩ X. Right: planar graph GV with V as
vertices and connected using portions of A or the boundary of X as edges.

Lemma 7. We can compute M(P, 2, C) in O(n3 logn) time.

Proof. Our approach is similar to the one used by Katz and Sharir [14]. Let A∗

the arrangement induced by the set DP of disks and the sets X and V . Let G be
the plane graph obtained by considering the restriction of A∗ to X : the vertices
of G are the vertices of A∗ contained in X and the edges of G are the edges of
A∗ fully contained in X—see Figure 1, right. For simplicity, let’s assume that
each vertex in G has degree 4, meaning that no three points of P are cocircular.
This condition can be lifted at the cost of making the discussion more tedious,
but without extra ideas. Consider a spanning tree of G and double each edge to
obtain an Euler path π. The path π has O(n2) edges and it visits each vertex of
V at least once and at most four times.

The idea of the algorithm is as follows. We want to find two vertices q, v ∈ V ,
such that P ∩ (Dq ∪Dv) has maximum weight. If we fix q and let DP (q) ⊂ DP

denote the disks in DP not containing q, then the best pair q, v (for this choice of
q) covers a weight of depth(q,DP) + maxv∈V depth(v,DP (q)). So our approach
is to walk along the tour π to visit all possible vertices q ∈ V , and maintain
the set D := DP (q)—we call this the set of active disks—such that we can
efficiently perform the following operations: (i) report a vertex v ∈ V maximizing
depth(v,D), and (ii) insert or delete a disk into D. Then we can proceed as
follows. Consider two vertices q′, q′′ that are connected by an edge of π. The
sets DP (q′) and DP (q′′) of active disks can differ by at most two disks. So while
we traverse π, stepping from a vertex q′ to an adjacent one q′′ along an edge of
π, we can update D with at most two insertions/deletions, and then report a
vertex v ∈ V maximizing depth(v,D). Next we show how to maintain D such
that both operations—reporting and updating—can be performed in O(n log n)
time. Since π has O(n2) vertices, the total time will then be O(n3 logn), as
claimed.

The main problem in maintaining the set of active disks D is that the inser-
tion or deletion of a disk can change depth(v,D) for Θ(n2) vertices v ∈ V . Hence,

Covering Many or Few Points with Unit Disks 63

to obtain O(n logn) update time, we cannot maintain all the depths explicitly.
Instead we do this implicitly, as follows.

Let T be a balanced binary tree on the path π, where the leftmost leaf stores
the first vertex of π, the next leaf the second vertex of π, and so on. Thus the
tree T has O(n2) nodes. For an internal node ν we denote by Tν the subtree
of T rooted at ν. Furthermore, we define π(ν) to be the subpath of π from the
leftmost vertex in Tν to the rightmost vertex in Tν . Note that if μ1 and μ2 are
the children of ν, then π(ν) is the concatenation of π(μ1) and π(μ2). Also note
that π(root(T)) = π. Finally, note that any subpath from π can be expressed
as the concatenation of the subpaths π(ν1), π(ν2), . . . of O(log n) nodes—this is
similar to the way a segment tree [9] works.

Now consider some disk Dp ∈ DP . Since Dp has O(n) vertices from V on
its boundary, the part of π inside Dp consists of O(n) subpaths. Hence, there
is a collection N(Dp) of O(n logn) nodes in T—we call this set the canonical
representation of Dp—such that π ∩Dp is the disjoint union of the set of paths
{π(ν) : ν ∈ N(Dp)}. We store at each node ν the following two values:

– Cover(ν): the total weight of all disks Dp ∈ D (that is, all active disks) such
that ν ∈ N(Dp).

– MaxDepth(ν): the value max{depth(v,D(ν)) : v ∈ π(ν)}, where D(ν) ⊂ D
is the set of all active disks whose canonical representation contains a node
μ in Tν .

Notice that MaxDepth(root(T)) = maxv∈V depth(v,D), so MaxDepth(root(T))
is exactly the value we want to report. Hence, it remains to describe how to
maintain the values Cover(ν) and MaxDepth(ν) when D is updated. Consider
the insertion of a disk Dp into D; deletions are handled similarly. First we find
in O(n log n) time the set N(Dp) of nodes in T that forms the canonical rep-
resentation of Dp. The values Cover(ν) and MaxDepth(ν) are only influenced
for nodes ν that are in N(Dp), or that are an ancestor of such a node. More
precisely, for ν ∈ N(Dp), we need to add the weight of Dp to Cover(ν) and to
MaxDepth(ν). To update the values at the ancestors we use that, if μ1 and μ2

are the children of a node ν, then we have

MaxDepth(ν) = Cover(ν) + max(MaxDepth(μ1),MaxDepth(μ2)).

This means we can update the values in a bottom-up fashion in O(1) time per
ancestor, so in O(n log n) time in total. This finishes the description of the data
structure—see Katz et al [13] or Bose et al [3] for similar ideas, or how to reduce
the space requirements. ��

Theorem 2. For fixed m > 1, we can compute M(P,m,C) in O(n2m−1 logn)
time.

Proof. For m > 2, fix any m − 2 vertices v1, . . . , vm−2 ∈ V , compute the point
set P ′ = P \ (Dv1 ∪ · · · ∪Dvm−2), and compute M(P ′, 2, C) in O(n3 logn) time
using the previous lemma. We obtain a placement of disks covering a weight of
w(P \P ′)+M(P ′, 2, C). This solution is optimal under the assumption that the

64 M. de Berg, S. Cabello, and S. Har-Peled

first m − 2 disks are placed at v1, . . . , vm−2. Iterating this procedure over the
O(|V |m−2) = O(n2m−4) possible tuples of vertices v1, . . . , vm−2, it is clear that
we obtain the optimal solution for placing m disks inside C. The time we spend
can be bounded as O(n2m−4n3 logn) = O(n2m−1 log n). ��

4 Approximation Algorithms for min(P, X)

We now turn our attention to the problem min(P,X) where we wish to place
a single disk D in X so as to minimize the sum of the weights of the points
in P ∩D. The approach consists of two stages. First, we make a binary search
to find a value T that is a constant factor approximation for min(P,X). For
this to work, we give a decision procedure that drives the search for the value T .
Second, we compute a (1+ε)-approximation of min(P,X) using a random sample
of appropriate density. In both cases, we will use the following lemma; a similar
result was obtained by Aronov and Har-Peled [2]. Recall that Da denotes the
unit disk centered at a point a.

Lemma 8. Let Q be an unweighted point set with at most n points, let X be
a domain of constant complexity, let A be a set of at most n points, and let
κ be a non-negative integer. We can decide in O(nκ + n logn) expected time if
min
(
Q, X \ (

⋃
a∈A Da)

)
� κ or min

(
Q, X \ (

⋃
a∈A Da)

)
> κ. In the former case

we can also find a unit disk D that is optimal for min
(
Q, X \ (

⋃
a∈A Da)

)
. The

running time is randomized, but the result is always correct.

Proof. Let A be the arrangement induced by the O(n) disks Da, a ∈ A, and
Dq, q ∈ Q, and let Aκ be the portion of A that has depth at most κ. The portion
Aκ has complexity O(nκ) [17] and it can be constructed using a randomized
incremental construction, in O(nκ + n logn) expected time [8]. Then, we just
discard all the cells of Aκ that are covered by any disk Da with a ∈ A, and for
the remaining cells we check if any has depth over κ and intersectsX . SinceX has
constant complexity, in each cell we spend time proportional to its complexity,
and the result follows. ��
The following combinatorial lemma is very similar to [2, Lemma 3.1].

Lemma 9. Let Q be an integer-weighted point set with n points, let X be any
domain, and let ΔQ = min(Q, X). Given a value k, set p = min{1, ck−1 logn},
where c > 0 is an appropriate constant. If R is a p-sample of Q and ΔR =
min(R,X), then whp it holds

(i) if ΔQ � k/2, then ΔR � kp/4;
(ii) if ΔQ � 2k, then ΔR � 3kp;
(iii) if ΔQ /∈ [k/8, 6k], then ΔR /∈ [kp/4, 3kp].

��
The idea for the decision version is to distinguish between heavy and light points.
The heavy points have to be avoided, while the light ones can be approximated
by a set of n integer-weighted points. Then we can use the previous lemma
to decide.

Covering Many or Few Points with Unit Disks 65

Lemma 10. Let X be a domain with constant complexity. Given a weighted
point set P with n points and a value T , we can decide in O(n log2 n) expected
time whether (i) min(P,X) < T , or (ii) min(P,X) > 2T , or (iii) min(P,X) ∈
(T/10, 10T), where the decision is correct whp.

Proof. First we describe the algorithm then discuss its running time and finally
show its correctness.
Algorithm. We compute the sets A = {p ∈ P | wp > 2T } and P̃ = P \A, as well
as the domain Y = X \

⋃
a∈A Da. If Y = ∅, then we can report min(P,X) > 2T ,

since any disk with center in X covers some point with weight at least 2T . If
Y
= ∅, we construct the integer-weighted point set Q obtained by picking each
point from P̃ with weight �2nwp/T �. Define k = 2n, and p = min{1, ck−1 logn},
where c is the same constant as in the previous lemma. We compute a p-sample
R of Q, and decide as follows: If min(R, Y) < kp/4 we decide min(P,X) < T ; if
min(R, Y) > 3kp we decide min(P,X) > 2T ; otherwise we decide min(P,X) ∈
(T/10, 10T).

Running time. We can compute A, P̃ ,Q, R in linear time, and check if Y =
∅ in O(n log n) time by constructing

⋃
a∈A Da explicitly using a randomized

incremental construction. Each point in P̃ has weight at most 2T , and therefore
a point in Q has an integer weight bounded by �2n · 2T/T � = O(n). We conclude
that Q is an integer-weighted point set with n points and weight w(Q) = O(n2).
Since p = O(n−1 logn) and kp = O(log n), it follows that R has Θ(w(Q) · p) =
Θ(n log n) points whp.

Because Y = X \
⋃

a∈A Da, we can use Lemma 8 to find if ΔR = min(R, Y) >
3kp or otherwise compute ΔR exactly, in O(|R| log |R| + |R|kp) = O(n log2 n)
time. The running time follows.

Correctness. We next show that, whp, the algorithm gives a correct answer. For
any unit disk D centered in Y we have

w(D∩P)−T/2 �
∑

p∈D∩P

(
wp −

T

2n

)
�
∑

p∈D∩P

⌊
2nwp

T

⌋
· T
2n

= w(D∩Q)· T
2n

(1)

and

w(D ∩Q) · T
2n

=
∑

p∈D∩P

⌊
2nwp

T

⌋
· T
2n

�
∑

p∈D∩P

2nwp

T
· T
2n

= w(D ∩ P). (2)

We conclude that w(D ∩P)− T/2 � (T/2n) ·w(D ∩Q) � w(D ∩ P). Using the
notation ΔR = min(R, Y), ΔQ = min(Q, Y), and ΔP = min(P, Y), we have

ΔP − T/2 � T

2n
·ΔQ � ΔP . (3)

The value ΔR provides us information as follows:

– If ΔR < kp/4, then ΔQ < k/2 = n whp because of Lemma 9(i). We then
have

ΔP � T

2n
ΔQ +

T

2
<

T

2n
· n+

T

2
= T.

66 M. de Berg, S. Cabello, and S. Har-Peled

– If ΔR > 3kp, then ΔQ > 2k = 4n whp because of Lemma 9(ii). We then
have

ΔP � T

2n
·ΔQ >

T

2n
4n = 2T.

– If ΔR ∈ [kp/4, 3kp], then ΔQ ∈ [k/8, 6k] = [n/4, 12n] whp by Lemma 9(iii).
We then have

ΔP � T

2n
·ΔQ + T/2 < 10T and ΔP � T

2n
·ΔQ � T

2n
>
T

10
.

It follows that the algorithm gives the correct answer whp. ��

Lemma 11. Let X be a domain with constant complexity. Given a weighted
point set P with n points, we can find in O(n log3 n) expected time a value T
that, whp, satisfies T/10 < min(P,X) < 10T .

Proof. The idea is to make a binary search. For this, we will use the previous
lemma for certain values T . Note that, if at any stage, the previous lemma returns
that min(P,X) ∈ (T/10, 10T), then we have found our desired value T , and we
can finish the search. In total, we will make O(log n) calls to the procedure of
Lemma 10, and therefore we obtain the claimed expected running time. Also,
the result is correct whp because we make O(log n) calls to procedures that are
correct whp.

Define the interval Ip = [wp, (n + 1) · wp) for any point p ∈ P , and let
I =

⋃
p∈P Ip. It is clear that min(P,X) ∈ I, since the weight of the heaviest

point covered by an optimal solution can appear at most n times in the solution.
Consider the values B = {wp, (n + 1) · wp | p ∈ P}, and assume that B =
{b1, . . . , b2n} is sorted increasingly. Note that for the (unique) index i such that
min(P,X) ∈ [bi, bi+1), it must hold that bi+1 � (n+ 1)bi

We first perform a binary search to find two consecutive elements bi, bi+1 such
that min(P,X) ∈ [bi, bi+1). Start with � = 1 and r = 2n. While r
= � + 1, set
m = �(�+ r)/2� and use the previous lemma with T = bm:

– if min(P,X) < T , then set r = m.
– if min(P,X) > 2T , then set � = m.
– if T/10 < min(P,X) < 10T , then we just return T as the desired value.

Note that during the search we maintain the invariant min(P,X) ∈ [b�, br).
Since we end up with two consecutive indices � = i, r = i+ 1, it must hold that
min(P,X) ∈ [bi, bi+1).

Next, we perform another binary search in the interval [bi, bi+1) as follows.
Start with � = bi and r = bi+1. While r/� > 10, set m = (� + r)/2 and call the
procedure of Lemma 10 with T = m:

– if min(P,X) < T , then set r = m.
– if min(P,X) > 2T , then set � = m.
– if T/10 < min(P,X) < 10T , then we just return T as the desired value.

Covering Many or Few Points with Unit Disks 67

Since bi+1 � (n+1)bi, it takes O(log n) iterations to ensure that r/� � 10. During
the search we maintain the invariant that min(P,X) ∈ [�, r), and therefore we
can return the last value � as satisfying min(P,X) ∈ (�/10, 10�). ��

When we have a constant factor approximation to the value min(P,X), we can
then round the weights accordingly and take a random sample of appropriate
size to obtain a (1 + ε)-approximation. The precise statement is as follows.

Lemma 12. Let 0 < ε < 1 be a parameter, let P be a weighted point set with
n points, and let T be a value such that T/10 < min(P,X) < 10T . We can find
in O((n/ε4) log2 n) expected time a unit disk D that, whp, satisfies w(D ∩ P) �
(1 + ε)min(P,X).

Proof. First we describe the algorithm, then show its correctness, and finally
discuss its running time. The ideas are similar to the ones used in Lemma 10.
However, now we also need to take into account the parameter ε.
Algorithm. We compute the sets A = {p ∈ P | wp > 10T } and P̃ = P \ A, as
well as the domain Y = X \

⋃
a∈A Da. Since min(P,X) < 10T by hypothesis, we

know that min(P,X) = min(P̃ , Y) = min(P, Y), because any disk with center
in
⋃

a∈A Da covers some point of A. We construct an integer-weighted point set
Q by picking each point from P̃ with weight �20nwp/εT �. Define k = �20n/ε�,
and let p = min{1, ck−1ε−2 logn}, where c is an appropriate constant. Finally,
compute a p-sample R of Q, find a best disk DR for min(R,X), and report the
disk DR as solution.
Correctness. The correctness is seen using the same approach as in Lemma 9
and [2, Lemma 3.1].
Running time. For the running time, observe that A, P̃ ,Q, R, Y can be computed
inO(n log n) time, like in Lemma 10. Each point in P̃ has weight at most 10T , and
therefore each point of Q has an integer weight bounded by �20n · 10T/εT � =
O(n/ε). We conclude that Q is an integer-weighted point set with n points and
total weight w(Q) = O(n2/ε). Note that p = O(n−1ε−1 log n) and kp =
O(ε−2 log n). Therefore, the set R has O(w(Q) · p) = O((n/ε2) logn) points whp.

Using Chernoff bound, one can see that whp ΔR = O(pΔQ). Substituting p
and using that ΔQ � 20n

εT ΔP , we obtain

ΔR = O

(
n−1ε−1 logn

20n
εT

ΔP

)
= O

(
ΔP logn
ε2T

)
= O

(
ε−2 logn

)
.

Since Y = X \
⋃

a∈A Da, we can use Lemma 8 to find a best disk for min(R, Y) in

O(|R| log |R|+ |R|ΔR) = O(nε−2 logn log(n/ε) + nε−4 log2 n) = O(nε−4 log2 n)

expected time, as the lemma claims. ��

By applying Lemma 11 to obtain a constant factor approximation, and then
Lemma 12 to obtain a (1 + ε)-approximation, we obtain our final result.

68 M. de Berg, S. Cabello, and S. Har-Peled

Theorem 3. Given a domain X of constant complexity, a parameter 0 < ε < 1,
and a weighted point set P with n points, we can find in O(n(log3 n+ε−4 log2 n))
expected time a unit disk that, with high probability, covers a weight of at most
(1 + ε)min(P,X). ��

References

1. P. K. Agarwal, T. Hagerup, R. Ray, M. Sharir, M. Smid, and E. Welzl. Translating
a planar object to maximize point containment. In ESA 2002, LNCS 2461, 2002.

2. B. Aronov and S. Har-Peled. On approximating the depth and related problems.
In SODA 2005, pages 886–894, 2005.

3. P. Bose, M. van Kreveld, A. Maheshwari, P. Morin, and J. Morrison. Translating
a regular grid over a point set. Comput. Geom. Theory Appl., 25:21–34, 2003.

4. S. Cabello, J. M. Dı́az Báñez, C. Seara, J.A. Sellarès, J. Urrutia, and I. Ven-
tura. Covering point sets with two disjoint disks or squares. Manuscript avail-
able at http://www.fmf.uni-lj.si/∼cabello/publications/. Preliminary ver-
sion appeared at EWCG’05.

5. B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge
University Press, New York, 2001.

6. B. Chazelle. The discrepancy method in computational geometry. In Handbook of
Discrete and Computational Geometry, pages 983–996. CRC Press, 2004.

7. B. Chazelle and D. T. Lee. On a circle placement problem. Computing, 36:1–16,
1986.

8. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational
geometry, II. Discrete Comput. Geom., 4:387–421, 1989.

9. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd
edition, 2000.

10. Z. Drezner. On a modified one-center model. Management Science, 27:848–851,
1991.

11. Z. Drezner and G. O. Wesolowsky. Finding the circle or rectangle containing the
minimum weight of points. Location Science, 2:83–90, 1994.

12. A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom. Theory Appl., 5:165–185, 1995.

13. M. J. Katz, K. Kedem, and M. Segal. Improved algorithms for placing undesirable
facilities. Computers and Operations Research, 29:1859–1872, 2002.

14. M. J. Katz and M. Sharir. An expander-based approach to geometric optimization.
SIAM J. Computing, 26:1384–1408, 1997.

15. J. Matoušek. Approximations and optimal geometric divide-an-conquer. J. Com-
put. Syst. Sci., 50:203–208, 1995.

16. F. Plastria. Continuous covering location problems. In H. Hamacher and
Z. Drezner, editors, Location Analysis: Theory and Applications, chapter 2, pages
39–83. Springer, 2001.

17. M. Sharir. On k-sets in arrangements of curves and surfaces. Discrete Comput.
Geom., 6:593–613, 1991.

On the Minimum Corridor Connection Problem

and Other Generalized Geometric Problems�

Hans Bodlaender1, Corinne Feremans2, Alexander Grigoriev2,
Eelko Penninkx1, René Sitters3, and Thomas Wolle4

1 Institute of Information and Computing Sciences, Utrecht University,
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{hansb,penninkx}@cs.uu.nl
2 Department of Quantitative Economics, Maastricht University,

P.O.Box 616, 6200 MD Maastricht, The Netherlands
{c.feremans,a.grigoriev}@ke.unimaas.nl
3 Department of Algorithms and Complexity,
Max-Planck-Institute for Computer Science,

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
sitters@mpi-inf.mpg.de

4 National ICT Australia Ltd��,
Locked Bag 9013, Alexandria NSW 1435, Australia

thomas.wolle@nicta.com.au

Abstract. In this paper we discuss the complexity and approximability
of the minimum corridor connection problem where, given a rectilinear
decomposition of a rectilinear polygon into “rooms”, one has to find the
minimum length tree along the edges of the decomposition such that ev-
ery room is incident to a vertex of the tree. We show that the problem
is strongly NP-hard and give an subexponential time exact algorithm.
For the special case of k-outerplanar graphs the running time becomes
O(n3). We develop a polynomial time approximation scheme for the case
when all rooms are fat and have nearly the same size. When rooms are
fat but are of varying size we give a polynomial time constant factor
approximation algorithm.

Keywords: minimum corridor connection, generalized geometric prob-
lems, complexity, exact algorithms, approximations.

1 Introduction

MCC and other generalized geometric problems. We consider the follow-
ing geometric problem. Given a rectilinear decomposition of a rectilinear polygon
(a subdivision into n “rooms”), find the minimum length tree (“corridor”) along

� This work was supported by the Netherlands Organisation for Scientific Research
NWO (project Treewidth and Combinatorial Optimisation).

�� National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 69–82, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

70 H. Bodlaender et al.

the edges of the decomposition (“walls”) such that every room is incident to a
vertex of the tree (has access to the corridor); for an illustration see Figure 1
which is borrowed from [6]. Let us refer to this problem as the minimum corridor
connection (MCC) problem.

Fig. 1. Minimum length tree along the corridors to connect the rooms

This problem belongs to the class of so-called generalized geometric problems
where given a collection of objects in the plane, one has to find a minimum
length network satisfying certain properties that hits each object at least once.
In particular, MCC can be viewed as a special case of the generalized geometric
Steiner tree problem where given a set of disjoint groups of points in the plane,
the problem is to find a shortest (in some metric space) interconnection tree
which includes at least one point from each group.

The most studied generalized geometric problem is the following generaliza-
tion of the classic Euclidean Traveling Salesman Problem (ETSP). Assume that
a salesman has to visit n customers. Each customer has a set of specified loca-
tions in the plane (referred to as a region or neighborhood) where the customer
is willing to meet the salesman. The objective is to find a shortest (closed) sales-
man tour visiting each customer. If each region is a single point, the problem
becomes the classic ETSP. This described generalization of ETSP is known as
the Generalized ETSP [12], or Group-ETSP, or ETSP with neighborhoods [5,8],
or the Geometric Covering Salesman Problem [1]. For short, we shall refer to
this problem as GTSP. In a similar way one can define generalizations for Min-
imum Steiner Tree (GSTP), Minimum Spanning Tree (GMST) and many other
geometric problems.

Applications. Applications for the minimum corridor connection problem and
other generalized geometric problems are naturally encountered in telecommuni-
cations, and VLSI design. For instance, a metropolitan area is divided by streets
and avenues into rectilinear blocks and the blocks must be interconnected by
an optical fiber network containing a gateway from each block. For easy main-
tenance the optical cables must be placed in the collector system which goes
strictly under the streets and avenues. The problem is to find the minimum
length network connecting all blocks. In Section 4.5 we discuss how our tech-
niques can be applied to even more generalized variants of this problem. For
the related problems and for the extended list of applications see Feremans [10],
Feremans, Labbé and Laporte [11], Mitchell [23], Reich and Widmayer [25].

On the Minimum Corridor Connection Problem 71

3D-applications of the generalized geometric problems, particularly MCC, ap-
pear also in constructions where, e.g., wiring has to be installed along the walls,
floors and ceilings of a multistory building such that each room has electricity,
phone lines, etc.

Related Work. To the best of our knowledge, before this article nothing was
known on complexity and approximability of the minimum corridor connection
problem; see list of open problems from the 12th Canadian Conference on Com-
putational Geometry CCCG 2000 [6].

For GTSP it is known that the problem cannot be efficiently approximated
within (2− ε) unless P=NP, see [26]. Constant factor approximations for GTSP
were developed for the special cases where neighborhoods are disjoint convex fat
objects [5,9], for disjoint unit discs [1], and for intersecting unit discs [8]. For
the general GTSP, Mata and Mitchell [22] gave an O(log n)-approximation. The
closest related work to this article is the paper by Dumitrescu and Mitchell [8],
where the authors have investigated the case of GTSP with regions given by
pairwise disjoint unit disks, and they developed a polynomial time approximation
scheme (PTAS) for this problem.

For the general GSTP, Helvig, Robins, and Zelikovsky [17] developed a poly-
nomial time nε-approximation algorithm where ε > 0 is any fixed constant. For
GSTP, GMST and several other generalized geometric problems exact search
methods and heuristics have been developed, see e.g., Zachariasen and Rohe [28],
and Feremans, Labbé and Laporte [11].

Our results and paper organization. The remainder of this extended ab-
stract is organized as follows. In Section 2 we show that the problem is strongly
NP-hard, answering an open question from CCCG 2000 on the complexity of
the minimum corridor connection, see [6].

In Section 3 we present a subexponential time exact algorithm for MCC and
a cubic time algorithm for the special case when the room connectivity graph is
k-outerplanar. (We follow [20] for the definition of “subexponential”.)

Then, in Section 4 we construct a PTAS for MCC with fat rooms having nearly
the same size, that partially solves another open question from CCCG 2000 on
the approximability of MCC, see [6]. More precisely, we consider the problem
where a square of side length q can be inscribed in each room and the perimeter
of each room is bounded from above by cq where c is a constant. In fact, we
present a framework for construction the PTASs for a variety of generalized
geometric problems restricted to (almost) disjoint fat object of nearly the same
size. We refer to this restriction as geographic clustering since one can associate
disjoint fat objects with countries on a map where all countries have comparable
(up to a constant factor) border lengths.

The framework for PTASs presented in this paper is based on Arora’s algo-
rithm for ETSP [2]. In particular, this framework allows to construct PTASs
for GTSP, GSTP, and GMST restricted to geographic clustering. The main
advantage of our techniques compared to the recent approximation scheme by
Dumitrescu and Mitchell [8] for GTSP on disjoint unit discs is that it leads to

72 H. Bodlaender et al.

a more efficient approximation scheme running in time n(logn)O(1/ε) compared
to nO(1/ε) in [8]. Moreover, our techniques are applicable to many other norms
(e.g., the one which is used in MCC) and to any fixed dimensional spaces, which
resolves one of the open questions in [8].

Finally, in Section 5 we show how the algorithm for GTSP from Elbassioni et
al. [9] can be used to derive a polynomial time constant approximation algorithm
for MCC with fat rooms of varying sizes that complements our partial answer
on the open question from CCCG 2000 on the approximability of MCC, see [6].

2 Complexity of MCC

In this section, we show that the decision version of MCC is strongly NP-
complete. To show this result, we use a transformation from the connected
vertex cover problem for planar graphs with maximum degree four. In this
later problem, given a planar graph G = (V,E) such that each vertex in V has
degree at most 4, and a positive integer R ≤ |V |, the question is whether there
exists a connected vertex cover of size at most R for G, i.e., does there exist
a subset W ⊆ V with |W | ≤ R such that the subgraph induced by W is con-
nected and for each edge {u, v} ∈ E, u ∈ W or v ∈ W? It is well known that
connected vertex cover for planar graphs with maximum degree four is
NP-complete, see [14,15]. Now we state the main result of this section. Because
of space constraints, we will omit proofs in this extended abstract.

Theorem 1. The minimum corridor connection problem is NP-complete, even
when coordinates of corner points are given in unary.

3 Exact Algorithms with Branchwidth

In this section, we discuss how the problem can be solved exactly exploiting the
notion of branchwidth and k-outerplanarity.

A branch decomposition of a graph G = (V,E) is a pair (T, σ), with T an
unrooted ternary tree and σ a bijection between the leaves of T and the edge
set E. For each edge e in T , consider the two subtrees T1 and T2 obtained by
removing e from T . Let Ge,1 (Ge,2) be the subgraph of G, formed by the edges
associated with leaves in T1 (T2). The middle set of an edge e in T is the set of
vertices that are in both Ge,1 and Ge,2. The width of a branch decomposition is
the maximum size over all middle sets, and the branchwidth of a graph is the
minimum width over all branch decompositions.

A noose is a closed simple curve on the plane that intersects the plane graph
G only at vertices. To a noose, we can associate two regions of the plane (the
“inside” and the “outside”), and likewise two subgraphs: the part of G drawn
inside the noose, and the part of G drawn outside the noose. These subgraphs
intersect precisely in the vertices on the noose.

A branch decomposition (T, σ) is a sphere cut decomposition or sc-decomposi-
tion, if for every edge e in T , there is a noose of G such that the two subgraphs

On the Minimum Corridor Connection Problem 73

associated with it are exactly Ge,1 and Ge,2, and the noose touches each face of
G at most once. Necessarily, the set of the vertices on the noose is the middle
set of e.

A sphere cut decomposition of a plane graph of minimum width can be found
in O(n3) time with the ratcatcher algorithm of Seymour and Thomas [27], see [7].
See also [16,18,19] for a necessary improvements to the original algorithm and
implementation issues.

Dynamic programming with a branch decomposition. Instead of the
MCC problem, we consider a small generalization, which we call face cover
tree: given a plane graph G = (V,E), with edge weights w : E → N, find a
subtree T of G of minimum total weight such that each interior face has at least
one vertex on T .

We now give an algorithm that solves the face cover tree problem using
a sphere cut decomposition of G.

Theorem 2. Suppose a plane graph is given together with a sphere cut decom-
position of width at most k. Then the face cover tree problem can be solved
in O((3 +

√
5)kk · n) time.

To obtain this result, we use techniques from Dorn et al. [7]. The basic idea is
that we build a table for each edge in the branch decomposition. Assuming a root
for T , we associate to each edge e ∈ E(T), the subgraph formed by the edges of
G associated with the leaves in T that are below e in the tree. This is one of the
subgraphs Ge,1 or Ge,2; w.l.o.g., we will assume that this is always Ge,1. A forest
T ′ that is a subgraph of Ge,1 can be extended to a solution of the face cover
tree if each face of Ge,1 that does not intersect the noose is touched by T ′ and
each subtree of T ′ contains at least one vertex in the middle set of e. We can
characterize such forests of the second type by the set of vertices in the middle
set that belong to the forest, an equivalence relation on these vertices which are
connected by the forest, the information which faces that intersect the noose are
touched by the forest, and (of course), the total length of all edges in the forest.
Having this information is also sufficient to see how the forest can be extended.

Thus, in our dynamic programming algorithm, we tabulate for each edge e in
the branch decomposition tree, for each triples (S,R,X), where S is a subset of
the middle set of e, R is an equivalence relation on S, and X is a subset of the
faces intersecting the noose of e, if there is at least one forest T ′ in Ge,1 such
that S is the set of vertices in the middle set that belong to T ′, R is the relation
on S that there is a path in T ′, and X is the set of faces intersecting the noose
of e that are touched by e, the minimum total weight of such a forest.

Using counting techniques from [7], we can show that for a middle set of size
�, such a table contains at most (3 +

√
5)� entries. (For instance, let R form

a non-crossing partition on S. We only need to distinguish whether faces are
touched whose two incident middle set vertices do not belong to S.)

It is trivial to compute the table for an edge in T incident to a leaf. For
other edges e, we combine the two tables for the two edges incident to the lower
endpoint of e. Basically, we try to combine each table entry of the left table with

74 H. Bodlaender et al.

each table entry of the right table; in O(k) time, we can verify whether these
give a new table entry, and of what signature. Thus, the table for an edge can
be computed in O((14 + 6

√
5)k · k) time.

From the table of the edge to the root, we can then determine the answer to
the problem. We computed O(n) tables, and hence used O((14 + 6

√
5)k · k · n)

time. Note that 14 + 6
√

5 = 24.7770.

Consequences. Given a plane graph G = (V,E), we can divide the vertices
of G into layers. All vertices incident to the exterior face are in layer L1. For
i ≥ 1, all vertices incident to the exterior face after we removed all vertices in
layers L1, . . . , Li are in layer Li+1. A planar graph G is k-outerplanar, if it has
a planar embedding with at most k non-empty layers. It is well known that a
k-outerplanar graph has branchwidth at most 2k; this can be proved in the same
way as the proof in [4] that k-outerplanar graphs have treewidth at most 3k−1.

It is interesting to note that in some applications, graphs with small outer-
planarity will arise in a natural way. For instance, for many buildings, the wall
structure of one floor will have bounded outerplanarity, as usually, each room is
adjacent to a corridor, and each corridor is adjacent to a room with a window,
and thus, unless there is an open air part not at the exterior, this gives small
outerplanarity.

It is well long known that planar graphs have branchwidth (and treewidth)
O(
√
n). (This statement can be seen to be equivalent to the Lipton-Tarjan pla-

nar separator theorem [4,21].) The best known bound to our knowledge is the
following.

Theorem 3 (Fomin and Thilikos [13]). A planar graph with n vertices has
branchwidth at most

√
4.5 · n.

Thus we have the following consequences, where we expect that the actual run-
ning times of these algorithms will be better in practice.

Corollary 1. The face cover tree, and hence also the MCC problem can be
solved in O(n3 + 29.5539k) time on k-outerplanar graphs, and in O∗(210.1335

√
n)

time on planar graphs.

4 A PTAS for MCC with Geographic Clustering

To construct a polynomial time approximation scheme for MCC, we modify
Arora’s algorithm for ETSP [2,3]. We assume that the corner points of each of
the n rooms have integer coordinates, that each room encloses a q × q square
and has perimeter at most cq, for some constant c ≥ 4.

4.1 Perturbation and Curved Dissection

Arora’s algorithm for ETSP starts with perturbation of the instance that, with-
out great increase of the optimum, ensures that in the resulting new instance
all nodes lie on the unit grid, and the maximum internode distance is at most

On the Minimum Corridor Connection Problem 75

poly(n). In MCC, perturbation is not necessary. All corner points are already on
the integer grid. Further, since all rooms are connected and the perimeter of a
room is at most cq the smallest bounding box (the smallest axis parallel square
containing all rooms) has side length at most cqn. Let the size of the bounding
box be L ∈ [cqn, 2cqn] such that L/cq is a power of 2. A simple packing argument
shows that the value of the optimal solution is OPT = Ω(qn).

First we define the straight dissection of the bounding box. We stop the parti-
tioning when the side length of the square is cq. Since L ≤ 2cqn the depth of the
dissection tree is O(log n). Let the level of a square be its depth from the root in
the straight dissection tree and the level i dissection lines are the straight lines
participating in the division of the level i− 1 square into level i sub-squares.

A dissection line can cut a room into two or more parts. This causes troubles
for the dynamic programming since we have to determine for each room in which
square of the dissection it gets connected. To solve this problem we introduce a
curved dissection.

Consider a horizontal level dissection line. We replace the line by a dissection
curve by walking from left to right and whenever we hit the boundary of a room
we follow the boundary (in arbitrary direction) until the dissection line is hit
again. The obtained curve may go through some boundary segments twice. We
shortcut the curve and obtain a simple path partitioning the set of rooms in
an upper and lower set. Vertical dissection curves are defined in a similar way.
Moreover, we can easily do this such that each horizontal curve crosses each
vertical curve exactly once, i.e., the intersection is one point or a simple path.
(See Figures 2 and 3.) Notice that no two horizontal (vertical) dissection curves
intersect since, at any point on the curve, the deviation from the dissection line
is strictly less than cq/2.

The transformation of lines to curves maps each node of the straight dissection
tree onto a polygon which we denote by node polygons of the curved dissection
tree of the bounding box.

In Figure 2, dissection lines are depicted by dotted lines and dissection curves
are depicted by fat piece-wise linear curves. Notice that the middle room is
crossed by vertical and horizontal dissection lines.

4.2 Portals and Portal Respecting Trees

Let a level i dissection curve have 2im special points equally spaced on that
curve. By equally spaced we mean that the piece-wise linear fragments of the

Fig. 2. Curved dissection

76 H. Bodlaender et al.

curve between two consecutive points have the same length. We refer to these
points as portals and to m as portal parameter (to be defined later).

Remember that the intersection of a horizontal and vertical curve is in general
a path. The definition above leads to two sets of portals on such paths. We
keep only the portals of the highest level curve and pick one set arbitrarily if
levels are equal. Further, we define one portal on both endpoints of each path of
intersection which we call corner portals.

To make the dynamic programming work we have to assume that if some
segment of the tree coincides with a dissection curve, it can only connect rooms
on one side of the curve. To serve rooms at the other side it has to cross the
curve. (See Figure 3.) We call a feasible tree portal respecting if these crossings
only appear at portals. We refer to the boundary segment of the node polygon
belonging to the dissection curve as the side of the node polygon. Notice that
sides may overlap. A portal respecting tree is k-light if it crosses each side of
each node polygon at most k times.

� � � � � � � � 	
 � �
 � � �

 � � �
 � � � � � �

� � � � � � 	
 � �
 � � �

 � � �
 � �

� � � � � � � � � � � 	
 �

� � � � 	

�
 � � �

Fig. 3. Portals and a feasible portal respecting tree

4.3 The Algorithm

First we construct the bounding box with the dissection curves. Since each room
is adjacent to at most two curves the construction can be done in O(n) time.
Next we choose a, b ∈ {1, 2, . . . , L/(cq)} at random and make the a-th horizontal
and b-th vertical dissection curve the level zero curves. The curved dissection tree
is now build in a wrap-around manner as in Arora [3]. By removing from the 4-
ary tree all branches consisting of empty node polygons, we obtain a tree having
at most O(n) leaves and O(n logn) node polygons. Then we define the portals as
in Section 4.2. Starting at the leaves of the dissection tree in a bottom-up way,
we update the dynamic programming table. For each node polygon, for each
k-elementary subset of the portals on the boundary of the polygon, and for each
partition B1, . . . , Bp of these k portals, we store the length of the optimal forest
consisting of p trees which together touch all rooms and the i-th tree connects
all portals in Bi.

For the node polygons in the leaves of the dissection tree we simply enu-
merate all such forests, since these polygons contain at most c2 rooms. For the
root polygon we guess the information for the portals on the two level one dis-
section curves separating the root polygon. We make sure that the four forests

On the Minimum Corridor Connection Problem 77

together form one tree. The number of different problems in one node polygon
is O(mO(k)f(k)) for some function f . Taking m = O(log n

ε) and k = O(1
ε) the

size of the look up table is O(n logγ n), for some constant γ.

4.4 Performance Guarantee

The performance guarantee follows from the following theorem.

Theorem 4 (Structure Theorem). Let OPTa,b,k,m be the length of the min-
imum k-light portal respecting tree when the portal parameter is m.

E[OPTa,b,k,m −OPT] ≤
(
O

(
logn
m

)
+O

(
1

k − 4

))
OPT,

where E[·] is over the random choice of (a, b)-shift.

The proof is omitted and is slightly more complicated than in Arora [3]. Taking
m = O(log n

ε) and k = O(1
ε) we derive the following result.

Theorem 5. The randomized algorithm described above returns a feasible tree
of length at most (1 + ε)OPT in time n(logn)O(1/ε).

To derandomize the algorithm, we can simply go through all possible choices for
a and b. More sophisticated derandomization techniques are described in Rao
and Smith [24]. In fact, a straightforward adaption of a more careful analysis
presented in [24] can also significantly improve the running times presented in
this extended abstract. For two dimensional space this would even imply an
O(n log n) time and O(n) space PTAS for MCC and other geometric problems
with geographic clustering.

4.5 Extensions of the PTAS

As in Arora [2,3] we did not use much of the specifics of MCC. The basic idea
to tackle the generalized geometric problems with geographic clustering is to
introduce the curved dissection, new stoppage criteria and then to use the fact
that under geographic clustering the lengths of the dissection curves only differ
by a constant factor from the lengths of the dissection lines, yielding the same
(up to a constant factor) charges to the objective function as in non-generalized
versions of the geometric problems. In this way, with slight modifications in the
analysis of the algorithm, we can derive PTASs for GTSP, GSTP, GMST and
many other generalized geometric problems. Moreover, the approach is natu-
rally applicable to many other norms, e.g., we can straightforwardly adopt the
approximation scheme to any Lp norm. Also notice, that the requirement that
the partition of the polygon must be rectilinear is not crucial. It is sufficient to
assume that the walls of each room are given by a sequence of line segments
forming a simple closed walk in the plane (here, the only critical assumption is
that all rooms must be fat and have comparable sizes, i.e., for each room its
perimeter must be bounded by cq where q is the minimum size over all rooms
of the maximum inscribed square or ball and c is a fixed constant).

78 H. Bodlaender et al.

Dumitrescu and Mitchell in [8] pointed out that in their approximation scheme
for GTSP only some of the arguments for disjoint discs can be lifted to higher
dimensions and, naturally, one of the open questions they listed was: “What
approximation bounds can be obtained in higher dimensions?” It is well known,
see e.g., [2,3,24], that Arora’s algorithm for ETSP is applicable also in higher
fixed dimensional spaces. Using literally the same argumentation as in [2] and our
construction for MCC with geographic clustering, one can derive the following
theorem.

Theorem 6. If the corner points of the rooms are in Rd, the MCC with ge-
ographic clustering admits a randomized PTAS running in n(logn)(O(

√
d/ε))d−1

time. Derandomization of the algorithm in this case will cost an additional factor
of O(nd) leading to overall running time of nd+1 (logn)(O(

√
d/ε))d−1

.

The same holds for GTSP, GSTP and GMST. This resolves the open question
from Dumitrescu and Mitchell [8].

5 An Approximation Algorithm for MCC with Rooms of
Varying Sizes

Elbassioni et al. [9] give a simple constant factor approximation algorithm for
GTSP, where the factor depends on the fatness of the regions. Here we modify
their algorithm and proof to obtain a constant factor approximation algorithm
for MCC.

For any room Ri, i ∈ {1, . . . , n}, we define its size ρi as the side length of
the smallest enclosing square of the room. We restrict to rooms for which the
perimeter is bounded by the size of the room, lets say at most 4ρi. A room R
is said to be α-fat if for any square Q whose boundary intersects R and whose
center lies in R, the area of the intersection of R and Q is at least α/4 times the
area of Q. Note that the fatness of a square is 1 and in general α ∈ [0, 1].
Algorithm Greedy:

(1) Pick the corner points pi ∈ Ri, i ∈ {1, . . . , n}, that minimize
∑n

i=2 d(p1, pi),
where d(x, y) is the shortest distance between x and y along the walls.

(2) Let G be a graph with a vertex vi for every room Ri and d(vi, vj) = d(pi, pj).
Find a minimum spanning tree T in G.

(3) Construct a solution to MCC as follows. For every edge (vi, vj) in T , let the
minimum length (pi, pj)-path belong to the corridor. If the resulting corridor
is not a tree, break the cycles (removing edges) arbitrarily.

Lemma 1. Algorithm Greedy gives an (n−1)-approximate solution for MCC.

Proof. Consider an optimal solution and let OPT be its length. Identify for
each room Ri a point p′i in the room that is connected to the optimal tree.
The optimal tree contains a path from p′1 to p′i for all i ∈ {2, . . . , n}. Therefore,
(n − 1)OPT ≥

∑n
i=2 d(p′1, p′i) ≥

∑n
i=2 d(p1, pi), which is at most the length of

the tree constructed by the algorithm. ��

On the Minimum Corridor Connection Problem 79

Lemma 2. The length of the shortest corridor that connects k rooms is at least
ρmin(kα/2− 2), where ρmin is the size of the smallest of these rooms.

Proof. Let P be a connecting corridor and let d(P) denote its length (along the
walls). Let the center of a square with side length 2ρmin move along the corridor
P . The total area A covered by the moving square is at most (2ρmin)2 + 2ρmin ·
d(P). Assume a room is connected with P at point p. Putting the center of the
square in point p we see that its boundary intersects the room. By definition
of α at least a fraction α/4 of the room is contained in the square. Therefore,
k(2ρmin)2α/4 is a lower bound on the area A. We have k(2ρmin)2α/4 ≤ A ≤
(2ρmin)2 + 2ρmin · d(P), yielding d(P) ≥ ρmin(kα/2 − 2), which completes the
proof. ��

Algorithm Connect:
(1) Order the rooms by their sizes ρ1 ≤ ρ2 ≤ . . . ≤ ρn. Pick any p1 on the

boundary of R1. For i = 2 up to n pick the point pi in Ri that minimizes
min{d(pi, p1), d(pi, p2), . . . , d(pi, pi−1)}, i.e., pick the point that is closest to
the already chosen points.

(2) Let G be a graph with a vertex vi for every room Ri and d(vi, vj) = d(pi, pj).
Find a minimum spanning tree T in G.

(3) Construct a solution to MCC as follows. For every edge (vi, vj) in T , let
the minimum length (pi, pj)-path belongs to the corridor. If the resulting
corridor is not a tree, break the cycles (removing edges) arbitrarily. Output
the minimum of the obtained tree and the tree constructed by algorithm
Greedy.

Theorem 7. Algorithm Connect gives a (16/α− 1)-approximate solution for
the minimum corridor connection problem in which the fatness of every room is
at least α.

Proof. If n − 1 ≤ 16/α − 1 then Greedy guarantees the approximation ratio
for smaller values of n. So assume n ≥ 16/α. Denote the set of points chosen by
Connect as P ′ = {p1, . . . , pn}. Let p∗i be the point from {p1, . . . , pi−1} that is
at minimum distance from pi. Denote the distance d(pi, p

∗
i) by xi.

Consider some closed walk Ω connecting all rooms and assume its length is
minimum. The length of this walk is clearly an upper bound on OPT . For each
room Ri, i ∈ {1, . . . , n}, we define one connection point ri on Ω in which it
hits the room. Consider one of the two possible directions of Ω and assume
that the tour connects the rooms in the order 1, 2, . . . , n. Let k ∈ {1, . . . , n}.
We define Ti as the part of this directed walk that connects exactly k rooms at
their connection points and starts from point ri. Let ti be the length of the (not
necessarily simple) path Ti. We have OPT ≤ d(Ω) =

∑n
i=1 ti/(k − 1).

Consider some i ∈ {1, . . . , n} and let Rh(i) be the smallest room among those
from the k rooms on the path Ti. Since Ri is on this path Ti and we ordered the
rooms by their size we may assume 1 ≤ h(i) ≤ i. We partition the rooms into
two sets. Let F be the set of rooms for which h(i) = i and let H contain the
remaining rooms. Let T ′ be an MST on the point set P ′ restricted to the rooms

80 H. Bodlaender et al.

in F . Then d(T ′) ≤ OPT + 2
∑

i∈F ρi. The connected graph that we construct
consists of the edges of T ′ and for all rooms i in H we add the path (pi, p

∗
i)

which has length xi. Note that the resulting graph is indeed connected and has
total length at most

OPT +
∑
i∈F

2ρi +
∑
i∈H

xi.

We define γ = kα/2− 2. From Lemma 2 we know

ti ≥ γρi, for all i ∈ F. (1)

If i ∈ H , then we argue as follows. Since the algorithm picked point pi we know
that the distance from any point in Ri to the point ph(i) (which is chosen before
pi) is at least xi. Hence, the distance from any point in Ri to any point in Rh(i)

is at least xi − 2ρh(i), implying ti ≥ xi − 2ρh(i). Additionally, we know from
Lemma 2 that ti ≥ γρh(i). Combining the two bounds we get

ti ≥ max{γρh(i), xi − 2ρh(i)} ≥
γ

γ + 2
xi, for all i ∈ H. (2)

Combining (1) and (2) we see that the MST given by the algorithm has length
at most

OPT +
∑
i∈F

2/γti +
∑

i∈H

(1 + 2/γ)ti ≤ OPT +
n∑

i=1

(1 + 2/γ)ti

≤ OPT + (1 + 2/γ)(k − 1)OPT
= OPT + (1 + 2/(kα/2− 2))(k − 1)OPT
= OPT + k(k−1)

k−4/αOPT

It is easy to show that k(k − 1)/(k − 4/α) equals 16/α− 2 for k = 8/α− 1 and
also for k = 8/α. Furthermore, it is strictly smaller for any value in between.
Hence, there is an integer k ∈ [8/α − 1, 8/α] such that k(k − 1)/(k − 4/α) ≤
16/α − 2. Note that by the assumption in the first line of the proof we satisfy
k ∈ {1, . . . , n}. We conclude that the length of the tree given by the algorithm
is at most (16/α− 1)OPT . ��

Acknowledgments

We thank Joe Mitchell, Sándor Fekete, and Mark de Berg for useful discussions
on the GTSP with geographic clustering, and also thanks to Sergio Cabello.

References

1. E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering
salesman problem. Discrete Applied Mathematics, 55:197–218, 1994.

2. S. Arora. Nearly linear time approximation schemes for Euclidean TSP and other
geometric problems. Journal of the ACM, 45:1–30, 1998.

On the Minimum Corridor Connection Problem 81

3. S. Arora. Approximation schemes for NP-hard geometric optimization problems:
A survey. Mathematical Programming, 97:43–69, 2003.

4. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science, 209:1–45, 1998.

5. M. de Berg, J. Gudmundsson, M. Katz, C. Levcopoulos, M. Overmars, and
A. van der Stappen. TSP with neighborhoods of varying size. Journal of Al-
gorithms, 57:22–36, 2005.

6. E. D. Demaine and J. O’Rourke. Open problems from CCCG 2000.
http://theory.lcs.mit.edu/~edemaine/papers/CCCG2000Open/, 2000.

7. F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algo-
rithms on planar graphs: Exploiting sphere cut branch decompositions. In Algo-
rithms - ESA 2005, 13th Annual European Symposium, pages 95–106. LNCS 3669,
Springer, October 2005.

8. A. Dumitrescu and J. S. B. Mitchell. Approximation algorithms for TSP with
neighborhoods in the plane. Journal of Algorithms, 48:135–159, 2003.

9. K. Elbassioni, A. V. Fishkin, N. H. Mustafa, and R. Sitters. Approximation al-
gorithms for Euclidean group TSP. In Automata, Languages and Programming:
32nd International Colloquium, ICALP, pages 1115–1126. LNCS 3580, Springer,
July 2005.

10. C. Feremans. Generalized Spanning Trees and Extensions. PhD thesis, Université
Libre de Bruxelles, Brussels, 2001.

11. C. Feremans, M. Labbé, and G. Laporte. Generalized network design problems.
European Journal of Operational Research, 148:1–13, 2003.

12. M. Fischetti, J. J. Salazar, and P. Toth. A branch-and-cut algorithm for the
symmetric generalized traveling salesman problem. Operations Research, 45:378–
394, 1997.

13. F. V. Fomin and D. M. Thilikos. New upper bounds on the decomposability of
planar graphs. Journal of Graph Theory, 51:53–81, 2006.

14. M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-
complete. SIAM Journal of Applied Mathematics, 32:826–834, 1977.

15. M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

16. Q. Gu and H. Tamaki. Optimal branch-decomposition of planar graphs in O(n3)
time. In Automata, Languages and Programming, 32nd International Colloquium,
ICALP 2005, pages 373–384. LNCS 3580, Springer, July 2005.

17. C. S. Helvig, G. Robins, and A. Zelikovsky. An improved approximation scheme
for the Group Steiner Problem. Networks, 37:8–20, 2001.

18. I. V. Hicks. Planar branch decompositions I: The ratcatcher. INFORMS Journal
on Computing, 17:402–412, 2005.

19. I. V. Hicks. Planar branch decompositions II: The cycle method. INFORMS
Journal on Computing, 17:413–421, 2005.

20. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

21. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J.
Appl. Math, 36:177–189, 1979.

22. C. S. Mata and J. S. B. Mitchell. Approximation algorithms for geometric tour
and network design problems. In ACM SoCG 1995: Vancouver, BC, Canada, pages
360–369. ACM, 1995.

23. J. S. B. Mitchell. Handbook of Computational Geometry, chapter Geometric short-
est paths and network optimization, pages 633–701. Elsevier, North-Holland, Am-
sterdam, 2000.

82 H. Bodlaender et al.

24. S. Rao and W. D. Smith. Approximating geometric graphs via “spanners” and
“banyans”. In ACM STOC 1998: Dallas, Texas, USA, pages 540–550. ACM, 1998.

25. G. Reich and P. Widmayer. Beyond Steiner’s problem: a VLSI oriented generaliza-
tion. In Graph-Theoretic Concepts in Computer Science, 15th International Work-
shop, WG ’89, pages 196–210. LNCS 411, Springer, 1990.

26. S. Safra and O. Schwartz. On the complexity of approximating TSP with neigh-
borhoods and related problems. In Algorithms - ESA 2003, 11th Annual European
Symposium, pages 446–458. LNCS 2832, Springer, September 2003.

27. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14:217–241, 1994.

28. M. Zachariasen and A. Rohe. Rectilinear group Steiner trees and applications in
VLSI design. Mathematical Programming, 94:407–433, 2003.

Online k-Server Routing Problems

Vincenzo Bonifaci1,2,	 and Leen Stougie1,3,		

1 Department of Mathematics and Computer Science
Eindhoven University of Technology

Den Dolech 2 – PO Box 513, 5600 MB Eindhoven, The Netherlands
v.bonifaci@tue.nl, l.stougie@tue.nl

2 Department of Computer and Systems Science
University of Rome “La Sapienza”

Via Salaria, 113 – 00198 Roma, Italy
bonifaci@dis.uniroma1.it

3 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
stougie@cwi.nl

Abstract. In an online k-server routing problem, a crew of k servers
has to visit points in a metric space as they arrive in real time. Possible
objective functions include minimizing the makespan (k-Traveling Sales-
man Problem) and minimizing the average completion time (k-Traveling
Repairman Problem). We give competitive algorithms, resource augmen-
tation results and lower bounds for k-server routing problems on several
classes of metric spaces. Surprisingly, in some cases the competitive ratio
is dramatically better than that of the corresponding single server prob-
lem. Namely, we give a 1 + O((log k)/k)-competitive algorithm for the
k-Traveling Salesman Problem and the k-Traveling Repairman Problem
when the underlying metric space is the real line. We also prove that
similar results cannot hold for the Euclidean plane.

1 Introduction

In a k-server routing problem, k servers (vehicles) move in a metric space in
order to visit a set of points (cities). Given a schedule, that is, a sequence of
movements of the servers, the time at which a city is visited for the first time
by one of the servers is called the completion time of the city. The objective is
to find a schedule that minimizes some function of the completion times.

We study k-server routing problems in their online version, where decisions
have to be taken without having any information about future requests. New
requests may arrive while processing previous ones. This online model is often
called the real time model, in contrast to the one-by-one model, which is the more
common model in texts about online optimization [5], but inadequate for server
routing problems. The same real time model is also the natural model and indeed
� Partly supported by the Dutch Ministry of Education, Culture and Science through

a Huygens scholarship.
�� Partly supported by MRT Network ADONET of the European Community (MRTN-

CT-2003-504438) and the Dutch BSIK/BRICKS project.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 83–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

84 V. Bonifaci and L. Stougie

is used for machine scheduling problems [22]. In fact, many of the algorithms for
online routing problems are adaptations of online machine scheduling algorithms.

Competitive analysis [5] has become the standard way to study online opti-
mization problems: an online algorithm A is said to be c-competitive if, for any
instance σ, the cost of A on σ is at most c times the offline optimum cost on
σ. This worst-case measure can be seen as the outcome of a game between the
online algorithm and an offline adversary, that is trying to build input instances
for which the cost ratio is as large as possible.

There is an abundant amount of literature on offline server routing problems,
both in past and recent times [7, 10, 12, 14, 18]. Online single server routing
problems have a recent but growing literature. The first paper by Ausiello et al.
[3] introduced the model for the online traveling salesman problem. Later works
investigated competitiveness of the more general dial-a-ride problems [1, 11] and
studied different objective functions or different adversarial models [2, 4, 13, 16,
17, 20]. A summary of single server results is contained in the thesis [19].

Prior to this publication, there was essentially no work on online multi-server
routing problems, except for some isolated algorithms [1, 4]. We give competitive
algorithms and negative results for online multi-server routing problems, with
the objective of minimizing either makespan or average completion time. In the
case of makespan we consider the variant known as nomadic, in which the servers
are not required to return at the origin after serving all requests; the above cited
previous results refer to the other variant, known as the homing traveling sales-
man problem. Apart from being the first paper dedicated to multi-server online
routing problems, the results are somewhat unexpected. We give the first results
of online problems for which multiple server versions admit lower competitive
ratios than their single server counterparts. This is typically not the case for
problems in the one-by-one model; for example, it is known that in the famous
k-server problem [21] the competitive ratio necessarily grows linearly with k.

It may also be useful to draw a comparison with machine scheduling, which is
closer to routing problems in many ways. In scheduling a lot of research has been
conducted to online multiple machine problems [22]. In the one-by-one model
competitive ratios increase with increasing number of machines. In real time
online scheduling nobody has been able to show smaller competitive ratios for
multiple machine problems than for the single machine versions, though here
lower bounds do not exclude that such results exist (and indeed people suspect
they do) [8, 9].

The rest of our paper is structured as follows. After introducing our model in
Section 2, we give in Section 3 competitive algorithms and lower bounds for both
the k-Traveling Salesman and the k-Traveling Repairman in general spaces. For
these algorithms, the upper bounds on the competitive ratio match those of the
best known algorithms for the single server versions. In Section 4, we show that
in the case of the real line we have an almost optimal algorithm for large k. The
same result cannot hold in the Euclidean plane, as we show in Section 5. We
give our conclusions in Section 6.

Online k-Server Routing Problems 85

2 Preliminaries

We assume a real time online model, in which requests arrive over time in a
metric space M. Every request is a pair (r, x) ∈ R+ ×M where r is the release
date of the request and x the location of the request. All the information about
a request with release date r, including its existence, is revealed only at time r.
Thus, an online algorithm does not know when all requests have been released.

An algorithm controls k vehicles or servers. Initially, at time 0, all these
servers are located in a distinguished point o ∈ M, the origin. The algorithm
can then move the servers around the space at speed at most 1. (We do not
consider the case in which servers have different maximum speeds; in compliance
with machine scheduling vocabulary we could say that the servers are identical
and work in parallel.) To process, or serve, a request, a server has to visit the
associated location, but not earlier than the release date of the request.

We consider so-called path metric spaces, in which the distance d between two
points is equal to the length of the shortest path between them. We also require
the spaces to be continuous, in the sense that ∀x, y ∈ M ∀a ∈ [0, 1] there is z ∈ M
such that d(x, z) = ad(x, y) and d(z, y) = (1− a)d(x, y). A discrete space, like a
weighted graph, can be extended to a continuous path metric space in the natural
way; the continuous space thus obtained is said to be induced by the original
space. We recall that a function d : M2 → R+ is a metric if satisfies: definiteness
(∀x, y ∈ M, d(x, y) = 0 ⇔ x = y); symmetry (∀x, y ∈ M, d(x, y) = d(y, x));
triangle inequality (∀x, y, z ∈ M, d(x, z) + d(z, y) ≥ d(x, y)). When referring to
a general space, we mean any element of our class of continuous, path metric
spaces. We will also be interested in special cases, namely the real line R and the
real halfline R+, both with the origin o at 0, and the plane R2, with o at (0, 0).

Defining the completion time of a request as the time at which the request has
been served, the k-traveling salesman problem (k-TSP) has objective minimizing
the maximum completion time, the makespan, and the k-traveling repairman
problem (k-TRP) has objective minimizing the average completion time.

We will use σ to denote a sequence of requests. Given σ, a feasible schedule
for σ is a sequence of moves of the servers such that all requests in σ are served.
ol(σ) is the cost online algorithm ol incurs on σ, and opt(σ) the optimal offline
cost on σ. ol is said to be c-competitive if ∀σ ol(σ) ≤ c · opt(σ).

We use s1, . . . , sk to denote the k servers, and write sj(t) for the position of
server sj at time t, and dj(t) for d(sj(t), o). Finally, given a path P in M, we
denote its length by |P |.

All the lower bounds we prove hold for randomized algorithms against an
oblivious adversary [5]. In order to prove these results, we frequently resort to
the following form of Yao’s principle [6, 23].

Theorem 2.1 (Yao’s principle). Let {oly : y ∈ Y} denote the set of de-
terministic online algorithms for an online minimization problem. If X is a
distribution over input sequences {σx : x ∈ X} such that

inf
y∈Y

EX [oly(σx)] ≥ cEX [opt(σx)]

86 V. Bonifaci and L. Stougie

Algorithm 1. Group Return Home (GRH)
Divide the servers into g = �k/k∗� disjoint sets (groups) of k∗ servers each. Any
remaining server is not used by the algorithm.
Initially, all servers wait at o. Every time a new request arrives, all servers not at o
return to the origin at full speed. Once all of the servers in one of the groups, say group
G (ties broken arbitrarily), are at o, compute a set of k∗ paths {P1, . . . , Pk∗} starting
at o, covering all unserved requests and minimizing maxi |Pi|. Then, for i = 1, . . . , k∗,
the i-th server in G follows path Pi at the highest possible speed while remaining at a
distance at most αt from o at any time t, for some constant α ∈ (0, 1]. Servers in other
groups continue to head towards o (or wait there) until a new request is released.

for some real number c ≥ 1, then c is a lower bound on the competitive ratio of
any randomized algorithm against an oblivious adversary.

3 Algorithms for General Metric Spaces

In this section, we give competitive algorithms and lower bounds for the k-TSP
and the k-TRP in general spaces. Our results will be formulated in a more
general resource augmentation framework [15]. We define the (k, k∗)-TSP and
(k, k∗)-TRP exactly as the k-TSP and the k-TRP, except that we measure the
performance of an online algorithm with k servers relative to an optimal offline
algorithm with k∗ ≤ k servers. Throughout the section, we let g =

⌊
k/k∗

⌋
.

Sections 3.1 and 3.2 give an algorithm for the (k, k∗)-TSP and the (k, k∗)-TRP
respectively. A lower bound for both problems is proved in Section 3.3.

3.1 The k-Traveling Salesman Problem

Theorem 3.1. There is a deterministic online algorithm for the (k, k∗)-TSP
with competitive ratio

1 +
√

1 + 1/2
k/k∗�−1.

The algorithm achieving this bound is called Group Return Home (Algorithm 1).
Define the distance of a group to the origin at time t as the maximum distance
of a server in the group to o at time t.

Lemma 3.1. At any time t, in the schedule generated by GRH, let
G1(t), . . . ,Gg(t) be the g groups in order of nondecreasing distance to o. Then
the distance of Gi(t) to o is at most 2i−gαt.

Proof. We prove the lemma by induction on the number of requests. That is, we
show that if the lemma holds at the release date t of some request, it will hold
until the release date t+ δ of the next request. Obviously, the lemma is true up
to the time the first request is given, since all servers remain at o.

Suppose a request is given at time t. By induction, we know that there are
groups G1(t), . . . ,Gg(t) such that each server of group Gi(t) is at distance at most

Online k-Server Routing Problems 87

2i−gαt from o. For the rest of the proof we fix the order of the groups as the order
they have at time t and write Gi instead of Gi(t). Let Di(τ) = maxs∈Gi d(s(τ), o).

Between time t and t′ = t+D1(t), the lemma holds since all servers are getting
closer to o. We show that the lemma holds at t′ + δ for all δ > 0. Notice that
D1(t′ + δ) ≤ δ since every server moves at most at unit speed.

If δ ∈ (0, 21−gαt], we know that D1(t′ + δ) ≤ 21−gαt, so the lemma holds with
the groups in the same order as before.

Now, let δ ∈ (2i−1−gαt, 2i−gαt] for 2 ≤ i ≤ g. Then at time t′ + δ, group Gj is
already at o for each 1 < j < i. For group Gi, Di(t′ + δ) ≤ 2i−gαt− 2i−1−gαt =
2i−1−gαt. For group G1, D1(t′ + δ) ≤ 2i−gαt. For groups Gi+1 through Gg,
Di+1(t′ + δ) ≤ 2i+1−gαt, . . . ,Dg(t′ + δ) ≤ 20αt. So the lemma holds for these
values of δ.

The last case is δ > αt. In this case all groups except G1 are at o, and because
of the speed constraint D1(t′ + δ) ≤ α(t′ + δ). Thus the lemma holds. ��

Proof (of Theorem 3.1). Let t be the release date of the last request and let
G1 be the group minimizing the distance to the origin at time t. Using Lemma
3.1 we know that D1(t) ≤ 21−gαt. Group G1 will return to the origin and then
follow the offline set of paths {P1, . . . , Pk∗}. Notice that opt(σ) ≥ t, since no
schedule can end before the release date of a request, and opt(σ) ≥ maxi |Pi|
because of the optimality of the Pi.

Let s be the server in G1 that achieves the makespan. If s does not limit its
speed after time t, we have ol(σ) ≤ t+ D1(t) + maxi |Pi| ≤ (2 + 21−gα)opt(σ).

Otherwise, let t′ be the last time at which s is moving at limited speed. It is
not difficult to see that s must serve some request at that time. Let x0 be the
location of this request. Then t′ = (1/α)d(x0, o) and s continues following the
remaining part of its path, call it P ′, at full speed. Hence, ol(σ) = t′ + |P ′|.
Since opt(σ) ≥ maxi |Pi| ≥ d(o, x0) + |P ′| this yields ol(σ) ≤ (1/α)opt(σ).

Thus, the competitive ratio is at most max{2 + 21−gα, 1/α} and choosing
α in order to minimize it gives α =

√
2g−1(2g−1 + 1) − 2g−1 and the desired

competitive ratio. ��

Corollary 3.1. There is a deterministic (1 +
√

2)-competitive online algorithm
for the k-TSP.

3.2 The k-Traveling Repairman Problem

Theorem 3.2. There is a deterministic online algorithm for the (k, k∗)-TRP
with competitive ratio 2 · 31/
k/k∗�.

We call the algorithm achieving the bound Group Interval (Algorithm 2), as
it can be seen as a multi-server generalization of algorithm Interval [16]. The
algorithm is well defined since the time between two departures of the same
group is enough for the group to complete its first schedule and return to the
origin: Bi+g −Bi = 2Bi.

To sketch the proof of Theorem 3.2, we start with two auxiliary lemmas.

88 V. Bonifaci and L. Stougie

Algorithm 2. Group Interval (GI)
Divide the servers into g = �k/k∗� disjoint sets (groups) of k∗ servers each. Any
remaining server is not used by the algorithm.
Let L be the earliest time that any request can be completed (wlog L > 0). For
i = 0, 1, . . ., define Bi = αiL where α = 31/g .
At time Bi, compute a set of paths Si = {P i

1 , . . . , P i
k∗} for the set of yet unserved

requests released up to time Bi with the following properties:
(i) every P i

j starts at the origin o;
(ii) maxj |P i

j | ≤ Bi;
(iii) Si maximizes the number of requests served among all schedules satisfying the
first two conditions.
Starting at time Bi, the j-th server in the (i mod g)-th group follows path P i

j , then
returns to o at full speed.

Lemma 3.2 ([16]). Let ai, bi ∈ R for i = 1, . . . , p, for which

(i)
∑p

i=1 ai =
∑p

i=1 bi, and
(ii)
∑p′

i=1 ai ≥
∑p′

i=1 bi for all 1 ≤ p′ ≤ p.

Then the
∑p

i=1 τiai ≤
∑p

i=1 τibi for any nondecreasing sequence of real numbers
0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τp.

Lemma 3.3. Let Ri be the set of requests served by the set of paths Si computed
by Group Interval at time Bi, i = 1, 2, . . . and let R∗

i be the set of requests in the
optimal offline solution that are completed in the time interval (Bi−1, Bi]. Then

q∑
i=1

|Ri| ≥
q∑

i=1

|R∗
i | for all q = 1, 2,

Proof. We omit the proof, as it is basically the same as that of Lemma 4 in
[16]. ��

Proof (of Theorem 3.2). Let σ = σ1 . . . σm be any sequence of requests. By
construction of Group Interval, each request in Ri is served at most at time 2Bi.
Now, let p be such that the optimal offline schedule completes in the interval
(Bp−1, Bp]. Summing over all phases 1, . . . , p yields

ol(σ) ≤ 2
p∑

i=1

Bi|Ri| = 2 · 31/g

p∑
i=1

Bi−1|Ri|. (1)

From Lemma 3.3 we know that
∑q

i=1 |Ri| ≥
∑q

i=1 |R∗
i | for q = 1, 2, . . . We

also know that
∑p

i=1 |Ri| =
∑p

i=1 |R∗
i |. Applying Lemma 3.2 to the sequences

ai := |Ri|, bi := |R∗
i |, τi := Bi−1, i = 1, . . . , p yields in (1)

ol(σ) ≤ 2 · 31/g

p∑
i=1

Bi−1|Ri| ≤ 2 · 31/g

p∑
i=1

Bi−1|R∗
i |. (2)

Online k-Server Routing Problems 89

Let C∗
j be the optimal off-line completion time of request σj . For each σj denote

by (Bφj , Bφj+1] the interval that contains C∗
j . This inserted in (2) yields

ol(σ) ≤ 2 · 31/g
m∑

j=1

Bφj ≤ 2 · 31/g
m∑

j=1

C∗
j = 2 · 31/g · opt(σ).

��

Corollary 3.2. There is a deterministic 6-competitive online algorithm for the
k-TRP.

We can improve the bounds slightly such as to match the (1+
√

2)2-competitive
algorithm [16] for the TRP but at the expense of increased technical details.

3.3 Lower Bounds

Theorem 3.3. Any randomized c-competitive online algorithm for the (k, k∗)-
TSP or the (k, k∗)-TRP has c ≥ 2.

Proof. Consider the metric space induced by a star graph with m unit-length
rays, the origin being the center of the star. No request is given until time 1. At
time 1, the adversary gives a request on an edge chosen uniformly at random, at
distance 1 from the origin. The expected makespan for the adversary is 1. For
the online algorithm, we say that a server guards a ray if at time 1 the server is
located on the ray, but not at the center of the star. Then the makespan is at
least 2 if no server guards the ray where the request is released, and at least 1
otherwise. But k servers can guard at most k rays, so

E[ol(σ)] ≥ 2 ·
(

1− k

m

)
+ 1 · k

m
≥ 2− k

m

and the result follows by Yao’s principle, since m can be arbitrarily large. ��

Notice that this lower bound is independent of the values k and k∗. A conse-
quence of this is that the upper bounds of Sections 3.1 and 3.2 are essentially
best possible when k >> k∗, as in that case they both approach 2.

4 Algorithms for the Real Line

4.1 An Asymptotically Optimal Algorithm

Theorem 4.1. There is a deterministic online algorithm with competitive ratio
1 +O((log k)/k) for both the k-TSP and the k-TRP on the real line.

As a preliminary, we prove a similar result on the halfline. Let gk be the unique
root greater than 1 of the equation zk(z − 1) = 3z − 1.

Lemma 4.1. GPS (Algorithm 3) is gk-competitive for k-TSP and k-TRP on
the halfline.

90 V. Bonifaci and L. Stougie

Algorithm 3. Geometric Progression Speeds (GPS)
As a preprocessing step, the algorithm delays every request (r,x) for which x ≥ r to
time x; that is, the release date of each request (r,x) is reset at r′ := max{r, x} (the
modified release date).
Then, let gk be the unique root greater than 1 of the equation gk

k = 3gk−1
gk−1

and define

αj = gj−k−1
k for j ∈ {2, 3, . . . , k}. For every j > 1, server sj departs at time 0 from o

at speed αj and never turns back. The first server s1 waits in o until the first request
(r0, x0) is released with 0 < x0 < s2(r

′
0). For i ≥ 0, define ti = gi

kr′
0. During any

interval [ti−1, ti], s1 moves at full speed first from o to gk−1
2

ti−1 and then back to o.

Proof. First, notice that the modified release date of a request is a lower bound
on its completion time. Thus it is enough to prove that, for every request (r, x),
the time at which it is served is at most gkr

′.
For 1 < j < k, we say that a request (r, x) is in zone j if αj ≤ x/r′ < αj+1.

We also say that a request is in zone 1 if x/r′ < α2, and that it is in zone k if
x/r′ ≥ αk. By construction, every request is in some zone and a request in zone
j will be eventually served by server sj .

For a request (r, x) in a zone j with 1 < j < k, since the request is served
by server sj at time x/αj and since x ≤ αj+1r, the ratio between completion
time and modified release date is at most αj+1/αj = gk. Similarly, for a request
in zone k, since x ≤ r′, the ratio between completion time and modified release
date is at most 1/αk = gk.

It remains to give a bound for requests in zone 1. Take any such request, i.e.,
a request (r, x) such that x < α2r

′ and suppose it is served at time τ ∈ [ti−1, ti]
for some i. If r′ ≥ ti−1, then, since τ ≤ ti, the ratio between τ and r′ is at most
gk by definition of ti, i ≥ 0.

If r′ < ti−1, then, since τ > ti−1, only two possible cases remain. First, the
situation that x > gk−1

2 ti−2. Since τ = ti−1 + x and r′ ≥ x/α2, we have

τ

r′
≤ x+ ti−1

x/α2
≤ α2

(
1 +

2gkti−2

(gk − 1)ti−2

)
= α2

3gk − 1
gk − 1

= α2g
k
k = gk.

In the second situation, x ≤ gk−1
2 ti−2. Then r′ must be such that s1 was already

on its way back to 0 during [ti−2, ti−1], in particular r′ ≥ gkti−2 − x. Thus,

τ/r′ ≤ gkti−2 + x

gkti−2 − x
≤ 3gk − 1

gk + 1
≤ gk. ��

The algorithm for the real line simply splits the k servers evenly between the
two halflines, and uses GPS on each halfline.

Lemma 4.2. For any k ≥ 2, SGPS (Algorithm 4) is g
k/2�-competitive for the
k-TSP and the k-TRP on the line.

Proof. The only lower bounds on the offline cost that we used in the proof of
Lemma 4.1 were the distance of every request from o and the release date of

Online k-Server Routing Problems 91

Algorithm 4. Split Geometric Progression Speeds (SGPS)
Arbitrarily assign
k/2� servers to R+ and �k/2� servers to R−. On each of the two
halflines, apply Algorithm 3 independently (i.e., ignoring the requests and the servers
in the other halfline).

every request. They are valid independent of the number of offline servers. In
particular, they hold if the number of offline servers is twice the number of online
servers. Thus, we can analyze the competitiveness of the online servers on each of
the two halflines separately and take the worst of the two competitive ratios. ��

Lemma 4.3. For any k ≥ 1, gk ≤ 1 + 2 log k+3
k .

Proof. We defined gk as the unique root greater than 1 of zk = 1 + 2z
z−1 . Since

limz→∞ zk > limz→∞ 1+ 2z
z−1 , it suffices to prove that z0 := 1+ 2 log k+3

k satisfies

zk
0 ≥ 1 + 2z0

z0−1 . The binomial theorem and the standard fact that
(
k
j

)
≥ kj

jj yield

zk
0 − 1 =

k∑
j=1

(
k

j

)
(2 log k + 3)j

kj
≥

k∑
j=1

(2 log k + 3)j

jj
≥

log k�+1∑
j=1

(2 log k + 3
j

)j

≥

log k�+1∑

j=1

2j ≥ 2log k+1 − 2 = 2k − 2.

Now it can be verified that for all k > 2, 2k − 2 > 2k
2 log k+3 + 2 = 2z0

z0−1 . Finally,
the bound also holds for k ∈ {1, 2} as seen by explicitly finding g1 and g2. ��

Theorem 4.1 now follows from Lemma 4.2 and Lemma 4.3.

4.2 Lower Bounds

Theorem 4.2. Any randomized c-competitive online algorithm for the k-TSP
or the k-TRP on the line has c ≥ 1 + 1/2k = 1 + Ω(1/k).

Proof. The adversary gives a single request at time 1, in a point drawn uniformly
at random from the interval [−1, 1]. The expected optimal cost is obviously 1.
Thus, by Yao’s principle it suffices to show that E[ol(σ)] ≥ 1 + 1/2k.

In order to bound E[ol(σ)], let f(x) = minj∈{1,...,k} d(x, sj(1)). Notice that
1 + f(x) is a lower bound on the cost paid by the online algorithm, assuming
that the request was given at x. In terms of expected values,

E[ol(σ)] ≥ E[1 + f(x)] = 1 +
1
2

∫ 1

−1

f(x)dx.

Thus, we want to find the minimum value of the area below f in [−1, 1]. That
area is minimized when the servers are evenly spread inside the interval and at
distance 1/k from the extremes, in which case its value is 1/k. ��

92 V. Bonifaci and L. Stougie

5 Lower Bounds on the Plane

Comparing the results in Section 3 with those in Section 4, we see that while
in general spaces the competitive ratio of both the k-TSP and the k-TRP al-
ways remains lower bounded by 2, on the real line we can achieve 1 + o(1)
asymptotically. A natural question is whether on a low-dimensional space like
the Euclidean plane we can also achieve 1+ o(1) competitiveness. In this section
we answer this question negatively.

Theorem 5.1. Any randomized c-competitive online algorithm for the k-TSP
on the plane has c ≥ 4/3.

Proof. As a crucial ingredient of the proof we introduce a new kind of request,
which is located in a single point x of the space but has an arbitrarily long pro-
cessing time p (this processing time can be divided among the servers processing
the request). We show how this can be emulated in the Euclidean plane with
arbitrarily good precision by giving a high enough number of requests packed
inside an arbitrarily small square around x.

Fix some arbitrary ε > 0. Consider a square with sidelength s =
√

εp centered
around x. The square can be partitioned in s2/ε2 smaller squares of sidelength
ε. In the center of each of these smaller squares we give a request. Notice that
the distance between any pair of such requests is at least ε. Thus, the sum of
the times required for any k servers to serve all requests is at least (s2

ε2 − k)ε, no
matter where the servers start (the −kε term reflects the possible saving each
server could have by starting arbitrarily close to the first request he serves).

For ε tending to zero, the requests converge to the point x and the total
processing time needed converges to p. If the starting points of the servers are
most favourable, an algorithm could finish serving all requests in time p/k.

We show how to use such a “long” request to achieve our lower bound. At
time 1, the adversary gives a long request of processing time p = 2k in a point
drawn uniformly at random from {(1, 0), (−1, 0)}. The expected optimal cost is
1 + p/k = 3. By Yao’s principle, it remains to prove that E[ol(σ)] ≥ 4.

Since there is a single long request, we can assume wlog that all the online
servers will move to the request and contribute to serving it. Since p = 2k, the
server that will contribute most to the service will have to spend time at least
2k/k = 2 in x, and this is enough for any other server to arrive and give a
contribution (since at time 1 no server can be farther than 2 from x).

Suppose wlog that the servers are numbered in order of nondecreasing distance
to x and let di = d(x, si(1)). ol(σ) ≥ 1 + t0, with t0 the time needed for
the servers to completely serve the request, i.e., the time when its remaining
processing time is zero. Thus, t0 satisfies

∑k−1
i=1 i(di+1 − di) + k(t0 − dk) = p ,

since during interval [di, di+1) exactly i servers are processing the request. Hence,

kt0 = p+ kdk −
k−1∑
i=1

i(di+1 − di) = p+
k∑

i=1

di.

Online k-Server Routing Problems 93

Now consider the positions of the online servers at time 1 inside the ball of
radius 1 around the origin. Regarding points as vectors in R2, di can be written
as ||si(1)− x|| (here || · || denotes the L2 norm). Then

k∑
i=1

di =
∑

i

||si(1)− x|| ≥ ||
∑

i

(si(1)− x)||

= k||1
k

∑
i

si(1)− x|| = k||b− x|| = k · d(b, x),

where b = 1
k

∑
i si(1) is the centroid of the si(1). Hence,

E[ol(σ)] ≥ 1 + E[t0] ≥ 1 + p/k + E[d(b, x)] =
= 3 + (1/2) d(b, (1, 0)) + (1/2) d(b, (−1, 0))
≥ 3 + (1/2) d((1, 0), (−1, 0)) = 4. ��

A similar technique gives an analogous lower bound for the k-TRP on the plane.

Theorem 5.2. Any randomized c-competitive online algorithm for the k-TRP
on the plane has c ≥ 5/4.

6 Conclusions and Open Problems

After analyzing the differences between multiple and single server variants, we
can conclude that sometimes having multiple servers is more beneficial to the
online algorithm than to the offline adversary. In some cases, including the trav-
eling repairman problem on the line, the online algorithms can approach the
offline cost when there are enough servers. In more general spaces, these ex-
tremely favorable situation cannot occur. Still in some intermediate cases, like
the Euclidean plane, it is conceivable that the competitive ratios become lower
than those of the corresponding single server problems. We leave the analysis of
the competitive ratio in these situations as an open problem.

References

[1] N. Ascheuer, S. O. Krumke, and J. Rambau. Online dial-a-ride problems: Min-
imizing the completion time. In H. Reichel and S. Tison, editors, Proc. 17th
Symp. on Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes
in Computer Science, pages 639–650. Springer-Verlag, 2000.

[2] G. Ausiello, V. Bonifaci, and L. Laura. The on-line asymmetric traveling salesman
problem. In F. Dehne, A. López-Ortiz, and J. Sack, editors, Proc. 9th Workshop
on Algorithms and Data Structures, volume 3608 of Lecture Notes in Computer
Science, pages 306–317. Springer-Verlag, 2005.

[3] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms
for the on-line travelling salesman. Algorithmica, 29(4):560–581, 2001.

[4] M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie. The online TSP against
fair adversaries. INFORMS Journal on Computing, 13(2):138–148, 2001.

94 V. Bonifaci and L. Stougie

[5] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[6] A. Borodin and R. El-Yaniv. On randomization in online computation. Informa-
tion and Computation, 150:244–267, 1999.

[7] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum
latency tours. In Proc. 44th Symp. on Foundations of Computer Science, pages
36–45, 2003.

[8] B. Chen and A. P. A. Vestjens. Scheduling on identical machines: How good is
LPT in an on-line setting? Operations Research Letters, 21:165–169, 1998.

[9] J. R. Correa and M. R. Wagner. LP-based online scheduling: From single to par-
allel machines. In Integer programming and combinatorial optimization, volume
3509 of Lecture Notes in Computer Science, pages 196–209. Springer-Verlag, 2005.

[10] J. Fakcharoenphol, C. Harrelson, and S. Rao. The k-traveling repairman problem.
In Proc. 14th Symp. on Discrete Algorithms, pages 655–664, 2003.

[11] E. Feuerstein and L. Stougie. On-line single-server dial-a-ride problems. Theoret-
ical Computer Science, 268(1):91–105, 2001.

[12] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms for
some routing problems. SIAM Journal on Computing, 7(2):178–193, 1978.

[13] D. Hauptmeier, S. O. Krumke, and J. Rambau. The online dial-a-ride problem
under reasonable load. In G. Bongiovanni, G. Gambosi, and R. Petreschi, edi-
tors, Proc. 4th Italian Conference on Algorithms and Complexity, volume 1767 of
Lecture Notes in Computer Science, pages 125–136. Springer-Verlag, 2000.

[14] R. Jothi and B. Raghavachari. Minimum latency tours and the k-traveling re-
pairmen problem. In M. Farach-Colton, editor, Proc. 6th Symp. Latin American
Theoretical Informatics, volume 2976 of Lecture Notes in Computer Science, pages
423–433. Springer-Verlag, 2004.

[15] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal
of the ACM, 47:214–221, 2000.

[16] S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie. News from the online
traveling repairman. Theoretical Computer Science, 295(1-3):279–294, 2003.

[17] S. O. Krumke, L. Laura, M. Lipmann, A. Marchetti-Spaccamela, W. E. de Paepe,
D. Poensgen, and L. Stougie. Non-abusiveness helps: an O(1)-competitive algo-
rithm for minimizing the maximum flow time in the online traveling salesman
problem. In K. Jansen, S. Leonardi, and V. V. Vazirani, editors, Proc. 5th Int.
Workshop on Approximation Algorithms for Combinatorial Optimization, volume
2462 of Lecture Notes in Computer Science, pages 200–214. Springer-Verlag, 2002.

[18] E. L. Lawler, J. K. Lenstra, A. Rinnooy Kan, and D. B. Shmoys. The Travel-
ing Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley,
Chichester, England, 1985.

[19] M. Lipmann. On-Line Routing. PhD thesis, Technical Univ. Eindhoven, 2003.
[20] M. Lipmann, X. Lu, W. E. de Paepe, R. A. Sitters, and L. Stougie. On-line dial-

a-ride problems under a restricted information model. Algorithmica, 40:319–329,
2004.

[21] M. Manasse, L. A. McGeoch, and D. Sleator. Competitive algorithms for server
problems. Journal of Algorithms, 11:208–230, 1990.

[22] J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, Online
Algorithms: The State of the Art, pages 196–231. Springer, 1998.

[23] L. Stougie and A. P. A. Vestjens. Randomized on-line scheduling: How low can’t
you go? Operations Research Letters, 30:89–96, 2002.

Theoretical Evidence for the Superiority of

LRU-2 over LRU for the Paging Problem�

Joan Boyar, Martin R. Ehmsen, and Kim S. Larsen

Department of Mathematics and Computer Science
University of Southern Denmark, Odense, Denmark

{joan,ehmsen,kslarsen}@imada.sdu.dk

Abstract. The paging algorithm LRU-2 was proposed for use in data-
base disk buffering and shown experimentally to perform better than
LRU [O’Neil, O’Neil, and Weikum, 1993]. We compare LRU-2 and LRU
theoretically, using both the standard competitive analysis and the newer
relative worst order analysis. The competitive ratio for LRU-2 is shown
to be 2k for cache size k, which is worse than LRU’s competitive ratio
of k. However, using relative worst order analysis, we show that LRU-
2 and LRU are asymptotically comparable in LRU-2’s favor, giving a
theoretical justification for the experimental results.

1 Introduction

On many layers in a computer system, one is faced with maintaining a subset
of memory units from a relatively slow memory in a significantly smaller fast
memory. For ease of terminology, we refer to the fast memory as the cache and to
the memory units as pages. The cache will have size k, meaning that it can hold
at most k pages at one time. Pages are requested by the user (possibly indirectly
by an operating or a database system) and the requests must be treated one at
a time without knowledge of future requests. This makes the problem an on-line
problem [2]. If a requested page is already in cache, this is referred to as a hit.
Otherwise, we have a page fault. The treatment of a request must entail that the
requested page reside in cache. Thus, the only freedom is the choice of a page
to evict from cache in order to make room for the requested page in the case of
a page fault. An algorithm for this problem is referred to as a paging algorithm.
Other names for this in the literature are “eviction strategy” or “replacement
policy”. Various cost models for this problem have been studied. We focus on the
classic model of minimizing the number of page faults. The problem is of great
importance in database systems where it is often referred to as the database disk
buffering problem. See [2] for an overview of the paging problem, cost models,
and paging algorithms in general.

Probably the most well-known paging algorithm is LRU (Least-Recently-
Used), which on a page fault evicts the least recently used page from cache.
� This work was supported in part by the Danish Natural Science Research Council

(SNF).

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 95–107, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

96 J. Boyar, M.R. Ehmsen, and K.S. Larsen

The experience from real-life request sequences is that overall LRU performs
better than all other paging algorithms which have been proposed up until the
introduction of LRU-2 [12]. On a page fault, LRU-2 evicts the page with the
least recent second to last request (if there are pages in cache which have been
requested only once, the least recently used of these is evicted). Compelling
empirical evidence is given in [12] in support of the superiority of LRU-2 over
LRU in database systems. We return to this issue below. Since the introduc-
tion of LRU-2, there have been other proposals for better paging algorithms; for
example [8].

In the on-line community, there are, to our knowledge, no published results
on LRU-2. We assume that this is because it has not been possible to explain
the experimental results theoretically. In this paper, we provide a theoretical
justification of LRU-2’s superiority over LRU. More specifically, we show using
relative worst order analysis [4] that LRU-2 and LRU are asymptotically com-
parable in LRU-2’s favor. In establishing this result, we prove a general result
giving on upper bound on how well any algorithm can perform relative to LRU.

It is well-known that analysis of the paging problem is particularly problematic
for the most standard quality measure for on-line algorithms, the competitive
ratio [9,13]. This has lead researchers to investigate alternative methods. See a
long list of these in [1]. However, these methods are mostly only applicable to
the paging problem.

In contrast, it has been demonstrated that the relative worst order ratio is
generally applicable. In most cases, the relative worst order ratio makes the
same distinction between algorithms as the competitive ratio does. However, the
following is a list of results, where the relative worst order ratio has distinguished
algorithms in a situation where the competitive ratio cannot distinguish or even
in some cases favors the ”wrong” algorithm. This is not an exclusive list; we
merely highlight one result from each of these on-line problems:

– For classical bin packing, Worst-Fit is better than Next-Fit [4].
– For dual bin packing, First-Fit is better than Worst-Fit [4].
– For paging, LRU is better than FWF (Flush-When-Full) [5].
– For scheduling, minimizing makespan on two related machines, a post-greedy

algorithm is better than scheduling all jobs on the fast machine [7].
– For bin coloring [11], a natural greedy-type algorithm is better than just

using one open bin at a time [10].
– For proportional price seat reservation, First-Fit is better than Worst-Fit [6].

We refer the reader to the referenced papers for details and more results. Here,
we merely want to point out that the relative worst order ratio is an appropriate
tool to apply to on-line problems in general and the paging problem in particular.

LRU-2, along with previous results and testing of the algorithm, is described
in Section 2. Its competitive ratio is proven to be 2k in Section 3, showing that
LRU-2 has a suboptimal competitive ratio, in comparison to LRU’s competitive
ratio of k. However, in Section 4, relative worst order analysis is applied showing
that LRU-2 is asymptotically comparable to LRU in LRU-2’s favor, providing

Theoretical Evidence for the Superiority of LRU-2 over LRU 97

the theoretical justification for LRU-2’s superiority. A result which may be of
independent interest bounds cLRU,A, the factor by which any algorithm A can
be better than LRU using relative worst order analysis: cLRU,A ≤ k+1

2 .

2 LRU-2 and Experimental Results

In [12], a new family of paging algorithms, LRU-K, is defined. Here, K is a
constant which defines the algorithm. On a page fault, LRU-K evicts the page
with the least recent K’th last request (for K = 1, LRU-K is LRU). If there
are pages in cache which have been requested fewer than K times, then some
subsidiary policy must be employed for those pages. In [12], LRU is suggested
as a possible subsidiary policy. However, it would also be natural to recursively
use LRU-(K− 1). For the case of K = 2, this is the same.

The authors’ motivation for considering LRU-2 (or LRU-K in general for
various K) is that LRU does not discriminate between pages with very frequent
versus very infrequent references. Both types will be held in cache for a long
time once they are brought in. This can be at the expense of pages with very
frequent references.

The algorithm LFU (Least-Frequently-Used) which evicts the page which is
least frequently used is the ultimate algorithm in the direction of focusing on
frequency, but this algorithm appears to adjust too slowly to changing patterns
in the request sequence [13]. The family of algorithms, LRU = LRU-1, LRU-2,
LRU-3, . . . with recursive subsidiary policies can be viewed as approaching the
behavior of LFU.

A conscientious testing in [12] of particularly LRU-2 and LRU-3 up against
LRU and LFU lead the authors to conclude that LRU-2 is the algorithm of
choice.

The algorithms are tested in a real database system environment using random
references from a Zipfian distribution, using real-life data from a CODASYL
database system, and finally using data generated to simulate request sequences
which would arise from selected applications where LRU-2 is expected to improve
performance.

LRU-2 and LRU-3 perform very similarly and in all cases significantly better
than the other algorithms. Many test results are reported which can be viewed
in different ways. If one should summarize the results in one sentence, we would
say that LRU and LFU need 50–100% extra cache space in order to approach
the performance of LRU-2.

3 Competitive Ratio Characterizations

Let A(I) denote the number of page faults A has on request sequence I. The
standard measure for the quality of on-line algorithms is the competitive ratio:
CR(A) of A is CR(A) = inf {c | ∃b : ∀I : A(I) ≤ c ·OPT(I) + b} , where OPT
denotes an optimal off-line algorithm [9,13].

98 J. Boyar, M.R. Ehmsen, and K.S. Larsen

LRU is known to be both a conservative algorithm [14] and a marking al-
gorithm [3]. Both types of algorithms have competitive ratio k. The following
request sequence, 〈(p1, p1), (p2, p2), ..., (pk+1, pk+1), (p1, p2, p1, p2)〉, shows that
LRU-2 belongs to neither of these classes, since it faults on all of the last four
requests. Thus, it is not obvious that its competitive ratio is k. In fact the lemma
below shows that it is larger than k.

Lemma 1. The competitive ratio of LRU-2 is at least 2k for k even.

Proof. Assume that there are k+1 distinct pages, p1, p2, ..., pk+1, in slow memory,
and that k is even.

Let

P1 = 〈(p2, p2), (p3, p3), . . . , (pk+1, pk+1)〉
P2 = 〈(p2, p2), (p3, p3), . . . , (pk, pk), (p1, p1)〉

and define the request sequence Il by

〈P1, (p1, p2, p1, p2), (p3, p4, p3, p4), . . . , (pk−1, pk, pk−1, pk),
P2, (pk+1, p2, pk+1, p2), (p3, p4, p3, p4), . . . , (pk−1, pk, pk−1, pk)〉l.

After LRU-2 processes P1, the page p1 will not be in cache. Considering any
block (pi, pi+1, pi, pi+1), for 1 ≤ i ≤ k + 1 in Il (where (k + 1) + 1 will be
considered 2), it follows inductively that the page pi is not in LRU-2’s cache on
the first request in that block. The faults on pi cause pi+1 to be evicted and vice
versa until the second fault on pi+1, which causes pi+2 (or p3, if i = k+ 1) to be
evicted. Thus, LRU-2 faults k times during the first occurrence of P1, never on
P1 or P2 after that, and on all 4kl of the remaining requests. OPT, on the other
hand, faults k times during the first occurrence of P1. It also faults on requests to
p1 immediately following P1 and evicts pk+1 each time. Similarly, on the requests
to pk+1 immediately following P2, it evicts p1. Thus it faults k+ 2l times in all.
Since l can be arbitrarily large, this gives a ratio of 2k asymptotically. ��
Lemma 2. LRU-2 is 2k-competitive.

Proof. First notice that it is enough to prove that in each k-phase (a maximal
subsequence of consecutive requests containing exactly k distinct pages) of any
sequence I, LRU-2 faults at most two times on each of the k different pages
requested in that phase. Suppose, for the sake of contradiction, that LRU-2
faults more than two times on some page in a phase P . Let p be the first page
in P with more than two faults. At some point between the second and third
faults on p, p must have been evicted by a request to some page q. The page q is
one of the k pages in P . Thus, at this point there must be some page r in cache
which is not in P . The second to last request to r must be before the start of
P and thus before the second to last request to p. Hence, p could not have been
evicted at this point. This gives a contradiction, so there are at most 2k faults
in any k-phase. ��
The following theorem follows immediately from the previous two results:

Theorem 1. CR(LRU-2) = 2k.

Theoretical Evidence for the Superiority of LRU-2 over LRU 99

4 Relative Worst Order Characterizations

Now we show the theoretical justification for the empirical result that LRU-2
performs better than LRU. In order to do this, we use a different measure for the
quality of on-line algorithms, the relative worst order ratio [4,5], which has pre-
viously [4,5,7,10,6] proven capable of differentiating between algorithms in other
cases where the competitive ratio failed to give the “correct” result. Instead of
comparing on-line algorithms to an optimal off-line algorithm (and then com-
paring their competitive ratios), two on-line algorithms are compared directly.
However, instead of comparing their performance on the exact same sequence,
they are compared on their respective worst permutations of the same sequence:

Definition 1. Let σ(I) denote a permutation of the sequence I, let A and B be
algorithms for the paging problem, and let AW(I) = maxσ{A(σ(I))}. Let S1 and
S2 be statements about algorithms A and B defined in the following way.

S1(c) � ∃b : ∀I : AW (I) ≤ cBW (I) + b

S2(c) � ∃b : ∀I : AW (I) ≥ cBW (I)− b

The relative worst order ratio WRA,B of algorithm A to algorithm B is defined
if S1(1) or S2(1) holds.

If S1(1) holds, then WRA,B = sup {r | S2(r)} , and

if S2(1) holds, then WRA,B = inf {r | S1(r)} .

The statements S1(1) and S2(1) check that the one algorithm is always at least
as good as the other on every sequence (on their respective worst permutations).
When one of them holds, the relative worst order ratio is a bound on how much
better the one algorithm can be. In some cases, however, the first algorithm can
do significantly better better than the second, while the second can sometimes do
marginally better than the first. In such cases, we use the following definitions
(from [5], but restricted to the paging problem here) and show that the two
algorithms are asymptotically comparable in favor of the first algorithm.

Definition 2. Let A and B be algorithms for the paging problem, and let the
statement S1(c) be defined as above. If there exists a positive constant c such
that S1(c) is true, let cA,B = inf {r | S1(r)} . Otherwise, cA,B is undefined.

– If cA,B and cB,A are both defined, A and B are (cA,B, cB,A)-related.
– If cA,B is defined and cB,A is undefined, A and B are (cA,B,∞)-related.
– If cA,B is undefined and cB,A is defined, A and B are (∞, cB,A)-related.
A and B are asymptotically comparable, if(
lim

k→∞
{cA,B} ≤ 1 ∧ lim

k→∞
{cB,A} ≥ 1

)
∨
(

lim
k→∞

{cA,B} ≥ 1 ∧ lim
k→∞

{cB,A} ≤ 1
)

where k is the size of the cache.
If A and B are asymptotically comparable algorithms, then A and B are asymp-

totically comparable in A’s favor if limk→∞{cB,A} > 1.

100 J. Boyar, M.R. Ehmsen, and K.S. Larsen

The relation, being asymptotically comparable in the first algorithm’s favor, is
transitive, so it gives a well defined means of comparing on-line algorithms.

Lemma 3. Asymptotically comparable in an on-line algorithm’s favor is a tran-
sitive relation.

Proof. Assume that three algorithms A, B, and C are related such that A is
asymptotically comparable to B in A’s favor and B is asymptotically comparable
to C in B’s favor.

We need to show that A is asymptotically comparable to C in A’s favor, i.e.,

(lim
k→∞

cA,C ≤ 1) ∧ (lim
k→∞

cC,A > 1).

Since A is asymptotically comparable to B in A’s favor and B is asymptotically
comparable to C in B’s favor, we know that

(lim
k→∞

cA,B ≤ 1) ∧ (lim
k→∞

cB,A > 1)

and

(lim
k→∞

cB,C ≤ 1) ∧ (lim
k→∞

cC,B > 1).

It follows that

1 ≥ (lim
k→∞

cA,B)(lim
k→∞

cB,C)

= lim
k→∞

(inf{c1 : ∃b1∀I : AW (I) ≤ c1BW (I) + b1}·

inf{c2 : ∃b2∀I : BW (I) ≤ c2CW (I) + b2})
= lim

k→∞
inf{c1c2 : ∃b1, b2∀I : AW (I) ≤ c1BW (I) + b1 ∧

BW (I) ≤ c2CW (I) + b2}
= lim

k→∞
inf{c : ∃b∀I : AW (I) ≤ cCW (I) + b}

= lim
k→∞

cA,C.

In the above, we use the fact that the c1’s and c2’s can be assumed to be non-
negative.

A similar argument shows that 1 < limk→∞ cC,A. ��

We proceed to show that LRU-2 and LRU are asymptotically comparable in
LRU-2’s favor. First, we show that LRU-2 can perform significantly better than
LRU on some sets of input.

Theorem 2. There exists a family of sequences In of page requests and a con-
stant b such that

LRUW (In) ≥ k + 1
2

LRU-2W (In)− b,

and limn→∞ LRUW (In) =∞.

Theoretical Evidence for the Superiority of LRU-2 over LRU 101

Proof. Let In consist of n phases, where in each phase, the first k − 1 requests
are to the k − 1 pages p1, p2, . . . , pk−1, always in that order, and the last two
requests are to completely new pages. LRU will fault on every page, so it will
fault n(k + 1) times.

Regardless of the order this sequence is given in, LRU-2 will never evict any
page p′ ∈ {p1, p2, . . . , pk−1} after the second request to p′. This follows from the
fact that there are at most k − 1 pages in cache with two or more requests at
any point in time. Hence, when LRU-2 faults there is at least one page in cache
with only one request in its history. By definition, LRU-2 must use its subsidiary
policy when there exists pages in cache with less than two requests, and it must
choose among these pages. This means that LRU-2 faults at most 2(k− 1) + 2n
times.

Asymptotically, the ratio is k+1
2 . ��

The above ratio of k+1
2 cannot be improved. In fact no paging algorithm A can

be (cA,LRU, cLRU,A)-related to LRU with cLRU,A >
k+1
2 .

Theorem 3. For any paging algorithm A,

cLRU,A ≤
k + 1

2
.

Proof. Suppose there exists a sequence I, where LRU faults s times on its worst
permutation, ILRU, A faults s′ times on its worst permutation, IA, and s > k+1

2 s′.
As proven in [5], there exists a worst permutation If of ILRU with respect to
LRU where all faults appear before all hits. Let I1 be the prefix of If consisting
of the s faults. Partition the sequence I1 into subsequences of length k+1 (except
possibly the last which may be shorter). We process these subsequences one at
time, possibly reordering some of them, so that A faults at least twice on all,
except possibly the last. (Note that since A will fault on the first k+1 requests, if
k ≥ 3, this last incomplete subsequence can be ignored. Otherwise, it contributes
at most an additive constant of k to the inequality in statement S1(k+1

2).) The
first subsequence need not be reordered. Suppose the first i subsequences have
been considered and consider the i + 1st, I ′ = 〈r1, r2, . . . , rk+1〉, of consecutive
requests in I1, where A faults at most once. Since LRU faults on every request,
they must be to k+1 different pages, p1, p2, ..., pk+1. Let p be the page requested
immediately before I ′. Clearly, p must be in A’s cache when it begins to process
I ′ (it is a paging algorithm). If rk+1 is not a request to p, then I ′ contains k+ 1
pages different from p, but at most k − 1 of them are in A’s cache when it
begins to process I ′ (p is in its cache). Hence, A must fault at least twice on the
requests in I ′. On the other hand, if rk+1 is a request to p, there are exactly k
requests in I ′ which are different from p. At least one of them, say pi, must cause
a fault, since at most k − 1 of them could have been in A’s cache just before
it began processing I ′. If A faults on no other page than pi in I ′, then all the
pages p, p1, p2, . . . , pi−1, pi+1, . . . , pk must be in A’s cache just before it starts to
process I ′. Now, move the request to pi to the beginning of I ′ which causes A to
fault and evict one of the pages p, p1, p2, . . . , pi−1, pi+1, . . . , pk. Hence, it must

102 J. Boyar, M.R. Ehmsen, and K.S. Larsen

fault at least one additional time while processing the rest of this reordering
of I ′. ��

Next, we show that LRU can never do significantly better than LRU-2. In or-
der to show this, we need some definitions and lemmas characterizing LRU-2’s
behavior.

Lemma 4. For any request sequence I, there exists a worst ordering of I with
respect to LRU-2 with all faults appearing before all hits.

Proof. We describe how any permutation I ′ of I can be transformed, step by
step, to a permutation ILRU-2 with all hits appearing at the end of the sequence,
without decreasing the number of faults LRU-2 will incur on the sequence. Let
I ′ consist of the requests r1, r2, . . . , rn, in that order.

If all hits in I ′ appears after all the faults, we are done. Otherwise consider
the first hit ri in I ′ with respect to LRU-2. We construct a new ordering by
moving ri later in I ′.

Let p denote the page requested by ri. First, we remove ri from I ′ and call
the resulting sequence I ′′.

If LRU-2 never evicts p in I ′′ or evicts p at the same requests in I ′′ as it
does in I ′, then insert ri after rn in I ′′. This case is trivial since the behavior of
LRU-2 on I ′ and I ′′ is the same.

Thus, we need only consider the case where p is evicted at some point after
ri−1 in I ′′, and is not evicted at the same point in I ′. Let rj , j > i, denote the
first request causing p to get evicted in I ′′ but not evicted in I ′. Insert ri just
after rj in I ′′. The resulting request sequence I ′′ is shown in Fig. 1 where rp,1

and rp,2 denote the next two requests to p (if they exist).

I ′ : 〈. . . , ri−1, ri, ri+1, . . . , rj , . . . , rp,1, . . . , rp,2, . . . 〉
I ′′ : 〈. . . , ri−1, ri+1, . . . , rj , ri, . . . , rp,1, . . . , rp,2, . . . 〉

Fig. 1. The request sequence I ′′ after moving ri

First note that moving a request to p within the sequence only affects p’s
position in the queue that LRU-2 evicts from. The relative order of the other
pages stays the same. Just before ri+1 the content of LRU-2’s cache is the same
for both sequences. Therefore, for I ′′, the behavior of LRU-2 is the same as for
I ′ until p is evicted at rj . Just after this eviction in I ′′, p is requested by ri in I ′′.
Thus, just before rj+1, the cache contents are again the same for both sequences.
This means that all pages that are in cache just before rj+1, except p, are evicted
no later for I ′′ than for I ′. Hence, no faults are removed on requests to pages
different from p, so we only need to count the faults removed on requests to p.

No faults on requests to p are removed on requests after rp,2 since after that
request the second to last request to p occurs at the same relative position in
I ′ as in I ′′, so LRU-2 cannot evict it in one and not the other. Hence, the
only potential faults that could have been removed are at the two requests rp,1

and rp,2.

Theoretical Evidence for the Superiority of LRU-2 over LRU 103

The only case that needs special care is the case where rp,1 and rp,2 both are
faults in I ′ but both are hits in I ′′. In all other cases at most one fault is removed
which is counterbalanced by the fault created on ri.

Consider the case where rp,1 and rp,2 both are faults in I ′ but neither is in
I ′′. First remove rp,1 from I ′′ and call the resulting sequence I ′′′. Since rp,2 is
a fault in I ′, p must get evicted in the subsequence 〈rp,1, . . . , rp,2〉 based on its
second to last request in that subsequence, which is the same request for both
I ′ and I ′′′. Consequently, if p is evicted in that subsequence of I ′ it must also
get evicted in that subsequence of I ′′′ and it follows that rp,2 is a fault in both
sequences and no faults have been removed.

The situation we are facing with I ′′′ is no different from the situation we faced
with I ′′. We need to insert a (removed) request to p (for I ′′ it was ri and for I ′′′

it is rp,1) without removing any faults, except that we now have increased the
number of faults among the first j requests by at least one, and we have moved
the problem of inserting a request to p later in the sequence. We now proceed
inductively on I ′′′ in the same manner as we did for I ′′ until we can insert the
request to p without removing any faults or we reach the end of the sequence
(in which case we place it there).

Thus, we obtain ILRU-2 in a finite number of steps. ��

Thus, when considering a worst case sequence for LRU-2, one can assume that
there is a prefix of the sequence containing all of the faults and no hits. In the
remaining, we will only be considering such prefixes. We define LRU-2-phases,
starting from any request in a request sequence I.

Definition 3. Let I = 〈r1, r2, ..., rn〉 be a request sequence for which LRU-2
faults on every request. The LRU-2-phase starting at request ri is P (ri) =
〈ri, ri+1, ..., rj〉, where j is as large as possible under the restriction that no page
should be requested three times in P (ri). A LRU-2-phase is complete if rj is not
the last request in the I, i.e., rj+1 is a page which occurs twice in P (ri).

Lemma 5. Each complete LRU-2-phase contains at least 2k + 1 requests to at
least k+1 distinct pages. In addition, it contains two requests to each of at least
k different pages.

Proof. By definition, within a complete LRU-2-phase, P , there is a request to
a page p immediately after that phase. This request causes a fault, and p was
requested at least twice within the phase. In order for p to be evicted within the
phase P , the second to last request to each of the k−1 other pages in cache must
have occurred more recently than the first request to p in P . Thus, counting p,
at least k distinct pages must have been requested twice in P . In addition, the
page causing the second eviction of p within P cannot have been in cache at
that point, so P consists of at least 2k + 1 requests. ��

Lemma 6. Let p be the page that starts a complete LRU-2-phase containing
exactly 2k+1 requests, then the following phase (if it exists) starts with a request
to p.

104 J. Boyar, M.R. Ehmsen, and K.S. Larsen

Proof. In general after a complete LRU-2-phase, LRU-2 has at least k−1 of the
pages requested twice in that phase in cache. If the phase ends with the second
request to a page, then LRU-2 contains k of the pages requested twice. This fact
follows from the observation that by the LRU-2 policy no page with two requests
in a phase can get evicted if there is a page in cache with only one request in
that phase.

This means that a phase containing only 2k + 1 requests must end with a
request to the only page with one request in that phase. Before that request the
cache contains k pages which have all been requested twice in the current phase,
hence p is the page with the earliest second request. This means p gets evicted on
the last request in the phase and hence (by the construction of LRU-2-phases)
it must be the page starting the next phase. ��

By induction the above shows that if there exist several consecutive phases, each
containing 2k+ 1 requests, then they must all begin with a request to the same
page. This then shows that if p1, p2, . . . , pk are the k pages requested twice in
a phase containing 2k + 1 requests, then after the first request in the following
phase (if it exists) all of the pages p1, p2, . . . , pk are in LRU-2’s cache.

Lemma 7. For any sequence I of page requests,

LRU-2W (I) ≤ (1 +
1

2k + 2
)LRUW (I).

Proof. Consider any sequence I of requests. By Lemma 4, there exists a worst
permutation, ILRU-2, of I such that LRU-2 faults on each request of a prefix I1
of ILRU-2 and on no requests after I1. Partition I1 into LRU-2-phases. We will
now inductively transform I1 into a sequence I ′1 such that

LRU-2(I1) ≤ (1 +
1

2k + 2
)LRUW (I ′1).

Start at the beginning of I1, and consider the LRU-2-phase starting with the
first request not already placed in a processed phase. By Lemma 6 each LRU-2-
phase contains at least a total of 2k+ 1 requests to at least k+ 1 distinct pages.
Since each page requested in a LRU-2-phase is at most requested twice, a LRU-
2-phase containing at least 2k+2 requests can be partitioned into two sets, each
containing at least k + 1 pages, none of which are repeated. Each of these sets
of requests can then be ordered so that LRU faults on every request.

Hence, suppose the current LRU-2-phase contains exactly 2k + 1 requests.
See Fig. 2 where | marks the beginning of a new phase in I1 which contains
exactly 2k+ 1 requests. Let p1, p2, . . . , pk be the k pages requested twice and q1
be the page requested once in that phase and let p1 be the page which begin
the following phase. The request ri to p1 which starts the following phase must
evict q1 and hence all the pages p1, p2, . . . , pk are in LRU-2’s cache just before
the request to ri+1 = q2. It follows that q2
∈ {p1, p2, . . . , pk}.

Theoretical Evidence for the Superiority of LRU-2 over LRU 105

〈. . . , |p1, . . . , q1, |ri = p1, ri+1 = q2, ri+2 . . . 〉

Fig. 2. A LRU-2-phase containing 2k + 1 requests

By moving ri to the end of the request sequence it follows from the above that
the modified phase in question now contains at least 2(k+1) requests (the 2k+1
requests and the request to q2) and by the same argument as above it follows
that it is possible to make LRU fault on every request. Hence in each such phase
LRU faults on (possibly) one request less than LRU-2. The next LRU-2-phase
to be processed starts with ri+2 or later.

Let l denote the total number of modified phases. For each modified phase
i, there are si ≥ 2(k + 1) requests, plus possibly one additional request which
LRU-2 faulted on and has been moved to the end. Thus, LRU faults at least∑l

i=1 si times and LRU-2 faults at most
∑l

i=1(si + 1) times. It
follows that

LRU-2W (I) ≤
∑l

i=1(si + 1)∑l
i=1 si

LRUW (I)

≤ l(2k + 3)
l(2k + 2)

LRUW (I)

= (1 +
1

2k + 2
)LRUW (I)

��

Combining Theorem 2 and the lemma above gives the following:

Theorem 4. LRU-2 and LRU are (1+ 1
2k+2 ,

k+1
2)-related, i.e., they are asymp-

totically comparable in LRU-2’s favor.

5 Concluding Remarks

In contrast to the results using competitive analysis, relative worst order analysis
yields a theoretical justification for superiority of LRU-2 over LRU, confirming
previous empirical evidence. It would be interesting to see if these results gener-
alize to LRU-K for K > 2. Recently, we have shown that the competitive ratio
for LRU-K is kK, and that the separation result showing that LRU-K can be
better than LRU holds. The question is: Does the asymptotic comparability still
hold.

Although it was shown here that LRU-2 and LRU are asymptotically compara-
ble, it would be interesting to know if the stronger result, that LRU-2 and LRU are
comparable using relative worst order analysis, holds. If they are, then the above
results show that the relative worst order ratio of LRU to LRU-2 is k+1

2 .

106 J. Boyar, M.R. Ehmsen, and K.S. Larsen

Note that any result showing that the relative worst order ratio is defined
for two algorithms immediately gives a result showing that they are asymptot-
ically comparable. Thus, the results from [5], showing that LRU is at least as
good as any conservative algorithm and better than Flush-When-Full (FWF),
combined with the results proven here, show that LRU-2 is asymptotically
comparable to any conservative algorithm and FWF, in LRU-2’s favor in
each case.

An algorithm called RLRU was proposed in [5] and shown to be better than
LRU using relative worst order analysis. We conjecture that LRU-2 is also
asymptotically comparable to RLRU in LRU-2’s favor. We have found a family
of sequences showing that LRU-2 can be better than RLRU, but would also like
to show that the algorithms are asymptotically comparable.

Acknowledgments

The authors would like to thank Peter Sanders for bringing LRU-2 to their
attention. The second author would like to thank Troels S. Jensen for helpful
discussions.

References

1. Susanne Albers. Online algorithms: A survey. In Proceedings of the 18th Interna-
tional Symposium on Mathematical Programming, pages 3–26, 2003.

2. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

3. Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competi-
tive Paging with Locality of Reference. Journal of Computer and System Sciences,
50(2):244–258, 1995.

4. Joan Boyar and Lene M. Favrholdt. The relative worst order ratio for on-line al-
gorithms. In Proceedings of the Fifth Italian Conference on Algorithms and Com-
plexity, volume 2653 of Lecture Notes in Computer Science, pages 58–69. Springer-
Verlag, 2003. Extended version to appear in ACM Transactions on Algorithms.

5. Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. The Relative Worst Order
Ratio Applied to Paging. In Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 718–727. ACM Press, 2005.

6. Joan Boyar and Paul Medvedev. The Relative Worst Order Ratio Applied to
Seat Reservation. In Proceedings of the Nineth Scandinavian Workshop on Algo-
rithm Theory, volume 3111 of Lecture Notes in Computer Science, pages 90–101.
Springer-Verlag, 2004.

7. Leah Epstein, Lene M. Favrholdt, and Jens S. Kohrt. Separating Scheduling Algo-
rithms with the Relative Worst Order Ratio. Journal of Combinatorial Optimiza-
tion. To appear.

8. Amos Fiat and Ziv Rosen. Experimental Studies of Access Graph Based Heuris-
tics: Beating the LRU Standard? In Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 63–72, 1997.

9. Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Com-
petitive Snoopy Caching. Algorithmica, 3:79–119, 1988.

Theoretical Evidence for the Superiority of LRU-2 over LRU 107

10. Jens Svalgaard Kohrt. Online Algorithms under New Assumptions. PhD thesis,
Department of Mathematics and Computer Science, University of Southern Den-
mark, Odense, Denmark, 2004.

11. Sven Oliver Krumke, Willem de Paepe, Jörg Rambau, and Leen Stougie. Online Bin
Coloring. In Proceedings of the Nineth Annual European Symposium on Algorithms,
volume 2161 of Lecture Notes in Computer Science, pages 74–85. Springer-Verlag,
2001.

12. Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K Page
Replacement Algorithm for Database Disk Buffering. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 297–306, 1993.

13. Daniel D. Sleator and Robert E. Tarjan. Amortized Efficiency of List Update and
Paging Rules. Communications of the ACM, 28(2):202–208, 1985.

14. Neal Young. The k-Server Dual and Loose Competitiveness for Paging. Algorith-
mica, 11(6):525–541, 1994.

Improved Approximation Bounds for Edge

Dominating Set in Dense Graphs

Jean Cardinal, Stefan Langerman	, and Eythan Levy

Computer Science Department
Université Libre de Bruxelles, CP212

B–1050 Brussels, Belgium
{jcardin,slanger,elevy}@ulb.ac.be

Abstract. We analyze the simple greedy algorithm that iteratively re-
moves the endpoints of a maximum-degree edge in a graph, where the
degree of an edge is the sum of the degrees of its endpoints. This algo-
rithm provides a 2-approximation to the minimum edge dominating set
and minimum maximal matching problems. We refine its analysis and
give an expression of the approximation ratio that is strictly less than 2
in the cases where the input graph has n vertices and at least ε n

2
edges,

for ε > 1/2. This ratio is shown to be asymptotically tight for ε > 1/2.

1 Introduction

While there exist sophisticated methods yielding approximate solutions to many
NP-hard combinatorial optimization problems, the methods that are the simplest
to implement are often the most widely used. Among these methods, greedy
strategies are extremely popular and certainly deserve thorough analyses.

We study the worst-case approximation factor of a simple greedy algorithm
for the following two NP-hard problems.

Definition 1 (Minimum Edge Dominating Set)
input: A graph G = (V,E).
solution: A subset M ⊆ E of edges such that each edge in E shares an endpoint
with some edge in M .
measure: |M |.

Definition 2 (Minimum Maximal Matching)
input: A graph G = (V,E).
solution: A subset M ⊆ E of disjoint edges such that each edge in E shares
an endpoint with some edge in M .
measure: |M |.

It has been noted since long ago that Minimum Edge Dominating Set (EDS)
and Minimum Maximal Matching (MMM) admit optimal solutions of the
same size and that an optimal solution to EDS can be transformed in polynomial
� Chercheur qualifié du FNRS.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 108–120, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Approximation Bounds for Edge Dominating Set in Dense Graphs 109

time into an optimal solution to MMM [13], the converse transformation being
trivial.

The algorithm that we analyze in this paper uses the degree of the edges, with
the degree of an edge being the sum of the degrees of its endpoints. It iteratively
removes the highest-degree edge and updates the graph accordingly, as shown
in Algorithm 1. The algorithm returns a maximal matching, which provides a

Algorithm 1. The greedy algorithm
res ← ∅
while E(G) �= ∅ do

e ← arg maxe∈E(G) degG(e)
res ← res ∪ {e}
for each edge f adjacent to e do

E(G) ← E(G)\{f}
end for
E(G) ← E(G)\{e}

end while
return res

solution to both our problems. The algorithm therefore guarantees exactly the
same approximation ratios for the two problems.

It is well-known that any maximal matching M provides a 2-approximation
for MMM, as each edge in the optimal solution can cover at most two edges of
M . Our algorithm is thus clearly a 2-approximation algorithm and is expected
to return small matchings as the greedy step always selects a high-degree edge.
We however refine this analysis, and provide a tight approximation factor as a
function of the density of the graph.

Our Contributions

We provide a new bound on the approximation ratio of the greedy heuristic for
our problems in graphs with at least ε

(
n
2

)
edges (ε-dense graphs). This bound is

asymptotic to 1/(1−
√

(1 − ε)/2), which is smaller than 2 when ε is greater than
1/2. We further provide a family of tight examples for our bound. No algorithm
for ε-dense graphs with a better approximation ratio than the one shown in this
paper seems to be known.

Related Works

The MMM and EDS problems go back a long way. Both problems are already re-
ferred to in the classical work of Garey and Johnson [6] on NP-completeness. Yan-
nakakis and Gavril [13] then showed that EDS remains NP-hard when restricted
to planar or bipartite graphs of maximum degree 3, and gave a polynomial-time
algorithm for MMM in trees. Later, Horton et al. [8] and Srinivasan et al. [12] gave

110 J. Cardinal, S. Langerman, and E. Levy

additional hard and polynomially solvable classes of graphs. More recently, Carr
et al. [2] gave a 2 1

10 -approximation algorithm for the weighted edge dominating
set problem, a result which was later improved to 2 by Fujito et al. [5]. Finally,
Chleb̀ık and Chleb̀ıkovà [3] showed that it is NP-Hard to approximate EDS(and
hence also MMM) within any factor better than 7/6.

Another recent trend of research on approximation algorithms deals with ex-
pressing approximation ratios as functions of some density parameters [4,7,9],
related to the number of edges, or the minimum and maximum degrees. Not
many such results have yet been obtained for our problems. It was neverthe-
less shown in [1] that MMM and EDS are approximable within ratios that are
asymptotic to min{2, 1/(1−

√
1− ε)} for graphs having at least ε

(
n
2

)
edges, and

to min{2, 1/ε} for graphs having minimum degree at least εn.

2 Analysis of Algorithm 1

Definitions and Notations

Let G = (V,E) be a (simple, loopless, undirected) graph, with V = {v1, . . . , vn}.
Let OPT be a fixed optimal solution to MMM in G and let T be the set of
endpoints in OPT . Let M = {e1, . . . , eμ} be a set of μ edges returned by an
execution of the greedy algorithm on G. We assume that these edges are ordered
according to the order in which they were chosen by the algorithm.

The definition of the algorithm ensures that M is a maximal matching. Since
M is a matching, at least one endpoint of each edge ei belongs to T . Let us call
{v1, . . . , v2μ} the endpoints of the edges of M , with ei = v2i−1v2i and v2i−1 ∈ T .
Since the matching M is maximal, the set of vertices {v2μ+1, . . . , vn} forms a
stable set, i.e. a set of vertices sharing no edge. The set of vertices V \T also forms
a stable set as the vertices in T are the endpoints of a maximal matching. Fig. 1
shows an example with μ = 6 and |OPT | = 5. Our assumptions on the ordering
of the vertices ensure that a vertex has a higher index when it is included later
(or never) in the heuristic solution and that the vertex with lowest index in ei

belongs to T .
As can be seen in Fig. 1, there are two types of edges in M . Edges of the first

type have only one endpoint in T . We let X be the set of these endpoints. Edges
of the second type have both endpoints in T . Let a be the number of such edges.
Let finally b be the number of vertices of T outside M . Fig. 1 also illustrates X ,
a and b. Note that in practice the two types of edges can be interleaved in M ,
whereas they are shown separated in the figure for the sake of clarity.

The approximation ratio is β = μ/|OPT |. This quantity is fixed when M
and OPT are given. In order to give an upper bound on β, we prove an upper
bound on the number of edges in a graph when M and OPT are fixed. This
bound is then inverted in order to obtain an upper bound on β as a function of
the number of edges. Our results are expressed in terms of the density of our
graphs, according to the following definitions. We define an ε-dense graph as a
graph with at least ε

(
n
2

)
edges.

Improved Approximation Bounds for Edge Dominating Set in Dense Graphs 111

matching M

v2

v3

v4

v1

e2e1 eμ

a edgesμ − a edges

X

b vertices

stable set

Fig. 1. An example with μ = 6 and |OPT | = 5. Black vertices are the endpoints of the
minimum maximal matching.

The following additional graph-theoretic notations will be useful. For any
vertex set W ⊆ V and vertex v, let NW (v) be the set of neighbors of v in set
W and let dW (v) = |NW (v)|. Let an anti-edge xy be a pair of vertices x and
y sharing no edge. Let N<

W (vj) be the set of neighbors vi of vj with i < j and
vi ∈W , and let d<

W (vj) = |N<
W (vj |. For any of these notations, the subscript W

may be omitted when W = V . We also use the classical notation G[X] for the
subgraph of G induced by a vertex setX . Let m̄(G) =

(
n
2

)
−m(G) be the number

of anti-edges in G. We omit the parameter G when it is clear from context. We
define G ×G′, the join of graphs G = (V,E) and G′ = (V ′, E′) as a new graph
that contains all the vertices and edges of G ang G′ as well as all the possible
edges joining both sets of vertices.

Upper Bound

Lemma 1 shows that a certain set of vertices has degree at most |T |. This result
is then used by Lemma 2 in order to find an upper bound on the number of
edges in the graph.

Lemma 1. If d<
X(vj) > 0 for some vertex vj, then d(vj) ≤ |T |.

Proof. We call the vertices of T black vertices and the vertices outside of T
white vertices. Let i be the smallest index such that vi ∈ X and vivj ∈ E. Let
V b

a = (va . . . vb). Fig. 2 illustrates these notations. We can express the degree of
vj as:

d(vj) = dV i−1
1

(vj) + dV n
i

(vj).

Since vj has no neighbor in V i−1
1 ∩ X , we have dV i−1

1
(vj) ≤ |V i−1

1 \X | and
therefore

d(vj) ≤ |V i−1
1 \X |+ dV n

i
(vj). (1)

It can easily be seen that |V i−1
1 \X | = |V i−1

1 ∩ T | and therefore

d(vj) ≤ |V i−1
1 ∩ T |+ dV n

i
(vj).

112 J. Cardinal, S. Langerman, and E. Levy

vi+1

vi

V i−1
1 V n

i

X

vj

matching M stable set

Fig. 2. Structure of the matching M . In this example, vj was chosen inside the matching
and outside X. Note that Lemma 1 also allows vj to be in the stable set or in X.

The greedy algorithm ensures that edge vivi+1 has maximum degree in G[V n
i],

and therefore
d(vj) ≤ |V i−1

1 ∩ T |+ dV n
i

(vi+1). (2)

It is worth noticing that this is the only place in the whole proof of Theorem 1
where this property is used. Finally, since vi+1 is a white vertex, it can only be
adjacent to vertices in T , as the white vertices form a stable set. Therefore

d(vj) ≤ |V i−1
1 ∩ T |+ |V n

i ∩ T |
= |T |. ��

The following result provides a lower bound on the number of anti-edges in the
graph, hence an upper bound on the number of edges. Its proof uses counting
arguments that heavily rely on the bound given in Lemma 1. Recall that a is
the number of edges of M having both endpoints in T , and that b is the number
of vertices of T that are outside M .

Lemma 2

m̄ ≥ 2
(
n/2− a− b

2

)
Proof. Let d̄W (v), the anti-degree of v, be the number of anti-edges between v
and vertices of W . Thus

d̄W (v) =

{
|W | − dW (v) if v /∈W

|W | − 1− dW (v) otherwise.

We first define a family of vertex sets {Xi} and show a lower bound on m̄ as a
function of the sizes of these sets. We call the vertices in (resp. outside) T black
(resp. white) vertices.

Improved Approximation Bounds for Edge Dominating Set in Dense Graphs 113

The sets of vertices are the following (see Fig. 3): X1 and X2 are defined as
the black and white endpoints of μ − a − b arbitrary black-white edges of M .
Sets X3 and X4 are obtained by splitting the b black vertices outside of M into
two sets of equal sizes (rounding if necessary). Sets X5 and X6 are obtained by
splitting the n− 2μ− b white vertices outside of M into two sets of equal sizes.
Finally, X9 and X10 are obtained by dividing the remaining b vertices of the
matching into sets of equal sizes. We define xi = |Xi| for each set Xi.

μ − a − b ab

X9 X10

e2e1 eμ

X1

X3 X5

X4 X6

X7

X8

2μ vertices n − 2μ vertices

X2

Fig. 3. Notations for the vertex sets

We first show

m̄ ≥
(
x1

2

)
+
(
x2

2

)
+
(
x7

2

)
+
(
x8

2

)
+ x2x9 + x2x5 + x2x10 + x2x6 (3)

Note that each set Xi except X1 is stable, because it either contains only
white vertices or only vertices outside M . This explains the second,third and
fourth terms in the above sum. For each term of the form xixj in the sum, both
Xi and Xj contain only white vertices, and therefore share no edge, since any
set of white vertices in G is stable. Note that no anti-edge is counted twice, since
our anti-edges involve vertices taken in and between disjoint vertex sets.

Concerning the additional number of
(
x1
2

)
anti-edges required, we use Lemma 1

to prove that every edge inside X1 is compensated for by an anti-edge between
a vertex in X1 and a vertex outside X1. For each vj ∈ X1, we have:

d<
X1

(vj) ≤ dX1(vj)
= d(vj)− dV \X1(vj).

Applying Lemma 1 yields:

d<
X1

(vj) ≤ |T | − dV \X1(vj).

Using |T | = μ+ a+ b and μ ≤ n/2 yields

d<
X1

(vj) ≤ n− (μ− a− b)− dV \X1 (vj).

114 J. Cardinal, S. Langerman, and E. Levy

Finally, since |V \X1| = n− (μ− a− b), the definition of the anti-degree yields

d<
X1

(vj) ≤ d̄V \X1(vj).

We now take sums over the elements of X1:∑
vj∈X1

d<
X1

(vj) ≤
∑

vj∈X1

d̄V \X1(vj).

Since the sets N<
X1

(vj) corresponding to the values d<
X1

(vj) in the above sum
form a partition of the edges of G[X1], we have

m(G[X1]) ≤
∑

vj∈X1

d̄V \X1(vj).

From the definition of m̄, we have:(
x1

2

)
≤ m̄(G[X1]) +

∑
vj∈X1

d̄V \X1(vj).

The above relation thus implies the existence of at least
(
x1
2

)
anti-edges involving

vertices of X1.
There remains to show that bound 3 is greater than 2

(
n/2−a−b

2

)
. Plugging

x2 = x1, x9 = x3, and x10 = x4 into 3 yields:

m̄ ≥
(
x1

2

)
+
(
x2

2

)
+
(
x7

2

)
+
(
x8

2

)
+ x1x3 + x1x5 + x2x4 + x2x6.

and therefore

m̄ ≥
(
x1

2

)
+
(
x2

2

)
+
(
x7

2

)
+
(
x8

2

)
+ x1x7 + x2x8.

The desired result follows from repeated applications of the relation
(
x+y

2

)
=(

x
2

)
+
(
y
2

)
+ xy :

m̄ ≥
(
x1

2

)
+
(
x2

2

)
+
(
x7

2

)
+
(
x8

2

)
+ x1(x7) + x2(x8)

=
(
|X1 ∪X7|

2

)
+
(
|X2 ∪X8|

2

)
=
(
x1 + x7

2

)
+
(
x2 + x8

2

)
=
(
�n/2− a− b�

2

)
+
(
�n/2− a− b�

2

)
=∗
{

2
(
n/2−a−b

2

)
if n is even

2
(
n/2−a−b

2

)
+ 1/4 otherwise.

≥ 2
(
n/2− a− b

2

)
.

��

Improved Approximation Bounds for Edge Dominating Set in Dense Graphs 115

Theorem 1 is essentially a consequence of this upper bound on the number of
edges.

Theorem 1. The approximation ratio of the greedy heuristic in ε-dense graphs
with n vertices is at most⎧⎪⎨⎪⎩

2 if ε ≤ 1
2 + 1

n−1[
1− 1

2n −
√

1
4n2 +

(
1− 1

n

) (1−ε)
2

]−1

otherwise.

−→n→∞

⎧⎨⎩2 if ε ≤ 1
2[

1−
√

1−ε
2

]−1

otherwise.

Proof. We know from Lemma 2 that m̄ ≥ 2
(
n/2−a−b

2

)
. Simple algebra using

β = μ/|OPT |, 2|OPT | = μ+ a+ b and μ ≤ n/2 implies

a+ b ≤ n

2

[
2− β

β

]
.

and therefore

m̄ ≥ 2
(
n/2− n

2

[
2−β

β

]
2

)
= 2
(
n
(

β−1
β

)
2

)
. (4)

Let x = (β − 1)/β. We would like to express the above inequality as an upper
bound on β, i.e. on x. The inequality can now be written as

f(x) = n2x2 − nx− m̄ ≤ 0.

Differentiating f with respect to x shows that f decreases when x < 1
2n and

increases when x > 1
2n . The value of f(x) can therefore only be negative when

x− ≤ x ≤ x+, where x− and x+ are the roots of f(x). Solving the second-order
equation f(x) = 0 yields

x− =
1
2n
−
√

1
4n2

+
m̄

n2

and

x+ =
1
2n

+

√
1

4n2
+
m̄

n2
.

The value of x− is always negative and thus x− ≤ x brings us no additional
knowledge on the ratio. Rewriting inequality x ≤ x+ yields

β − 1
β

≤ 1
2n

+

√
1

4n2
+
m̄

n2

and

β ≤
[
1− 1

2n
−
√

1
4n2

+
m̄

n2

]−1

.

116 J. Cardinal, S. Langerman, and E. Levy

Reverting to m and setting m ≥ ε
(
n
2

)
yields the desired result

β ≤
[
1− 1

2n
−

√
1

4n2
+
(

1− 1
n

)
(1− ε)

2

]−1

=

[
1−O

(
1
n

)
−
√

1− ε

2
+O

(
1
n

)]−1

.

Direct algebraic manipulations show that[
1− 1

2n
−

√
1

4n2
+ (1 − ε)

(
1
2
− 1

2n

)]−1

< 2

⇐⇒ ε >
1
2

(
n

n− 1

)
⇐⇒ ε >

1
2

+
1

n− 1
.

��
Tightness

The case ε ≥ 7/9. Let ζn,k = Kn−2k×Kk,k, where Kn−2k is a complete graph
with n − 2k vertices and Kk,k a complete bipartite graph with two stable sets
of size k (see Fig. 4(b) for an example). Such a graph can be compared with the
complete split graph Ψn,k (see Fig. 4(a)), which is defined as the join of a clique
of size n − k and an independent set of size k and is a tight example for the
simpler greedy algorithm analyzed in [1].

Algorithm 1 always finds a perfect matching in ζn,k. On the other hand, the
following matching is clearly maximal: match k vertices of the clique with k
vertices of one independent set, and match the remaining vertices of the clique
among themselves. This is always possible when k and n are even and k ≤ n/3
and yields a matching of size (n− k)/2. Therefore we have the following bound
on the approximation ratio: β = μ/|OPT | ≥ n/(n− k).

The number of edges of ζn,k is given by m =
(
n
2

)
− 2
(
k
2

)
and therefore k =(

1 +
√

1 + 4
[(

n
2

)
−m
])
/2. We denote by ε the ratio m/

(
n
2

)
, i.e. the density of

ζn,k. From the above equality, we have k =
(
1 +
√

1 + 4
(
n
2

)
(1 − ε)

)
/2.

Plugging this equation into the inequality for β above yields

β ≥
[
1− 1

2n
−

√
1

4n2
+
(

1− 1
n

)
(1− ε)

2

]−1

,

which matches the upper bound on the ratio obtained in Theorem 1. Plugging
the condition k ≤ n/3 into m =

(
n
2

)
− 2
(
k
2

)
yields ε ≥ 7/9 +O(1/n). The graphs

ζn,k with n and k even are thus a collection of tight examples for our bound
when ε ≥ 7/9.

Improved Approximation Bounds for Edge Dominating Set in Dense Graphs 117

(a) Complete split graph
Ψ5,2

(b) Tight example ζ7,2

Fig. 4. Tight examples

The general case. A slightly more intricate family of graphs can be built,
which provide a collection of asymptotically tight examples for our ratio for any
ε ≥ 1/2. We first describe the special case when ε = 1/2 and β → 2. The graph
is the following (see Fig. 5) :

B ≡Mk/2 × Ik ×K1

where Mk/2 is a matching of k/2 edges, Ik an empty graph with k vertices, and
K1 is an isolated vertex.

Fig. 5. Tight example A9,4

It is easy to see that at each step of Algorithm 1 there exists an edge between
the matching and the stable set that has maximum degree. Therefore the algo-
rithm might choose k of these edges thus obtaining a cover of size k. On the
other hand, taking all the edges of Mk/2 and an additional edge incident to K1

yields a cover of size k/2 + 1. Therefore β ≥ k/(k/2 + 1) which tends to 2 as k
tends to infinity. It is further straightforward to check that the density of this
graph is 1/2 +O(1/n).

For other values of ε, we generalize the above example by joining it to a clique,
i.e. we build the following general family:

An,k ≡ (Mk/2 × Ik ×K1)×Kn−2k−1

Note that An,k is well-defined for any odd n and even 0 ≤ k < n/2 and that
the limiting values of k correspond respectively to B and to Kn. The density

118 J. Cardinal, S. Langerman, and E. Levy

of An,k therefore spans the whole range]1/2, 1]. It is further easy to check that
m(An, k) =

(
n
2

)
−
(
k
2

)
+O(n).

In An,k, Algorithm 1 will first empty the cliqueKn−2k−1, leaving us again with
a subgraph isomorphic to B. The algorithm can therefore return a matching of
size (n−2k−1)/2+k = (n−1)/2. On the other hand, taking a perfect matching
in the clique Kn−2k−1 together with the same k/2+ 1 edges described above for
B yields a cover of size (n− 2k − 1)/2 + k/2 + 1 = (n− k + 1)/2. Therefore we
have

β ≥ (n− 1)/2
(n− k + 1)/2

=
n− 1

n− k + 1

Setting m(An, k) =
(
n
2

)
−
(
k
2

)
+O(n) and ε = m/

(
n
2

)
as for ζn,k yields

n− 1
n− k + 1

→
[
1−
√

1− ε

2

]−1

as n→∞

Our lower bound on the ratio thus asymptotically matches the upper bound
of Theorem 1. Note that we have made no special assumption on k as we had
done for ζn,k. The graphs An,k with odd n and even 0 ≤ k < n/2 are therefore a
family of asymptotically tight graphs for ε ≥ 1/2. Asymptotically tight examples
for even n may be obtained by slight adaptation of the above graphs.

3 Conclusion

Several variants to Algorithm 1 could be devised. For example, one could decide
to slightly alter Algorithm 1 by each time selecting the edge that has the highest
degree in the original graph rather than the updated graph. This variant is
interesting as it can easily be implemented in time O(n + m) using counting
sort. Another interesting variant is the one in which one does not select the
highest degree edge, but rather the edge defined by the highest degree vertex
and its highest degree neighbor. We claim that Theorem 1 remains valid for
these two variants. One should first notice that the only place in our analysis
where explicit use is made of the strategy for choosing an edge is in Lemma 1.
It is almost straightforward to adapt its proof for both variants.

Further, it can be checked that the asymptotic bound of 1/ε for graphs with
minimum degree at least εn obtained for the maximal matching heuristic in [1]
is also tight for Algorithm 1, with the same tight examples as those described in
section 2.

Finally, Algorithm 1 also provides a 2-approximation for Minimum Vertex
Cover by taking the endpoints of the maximal matching returned by the al-
gorithm. The ratio obtained in Theorem 1 is also valid for this problem by
slight adaptations to the proofs. The analytical form of our asymptotic result
compares interestingly with that of both the simplest [1] and the best known
approximation algorithm for Minimum Vertex Cover in ε-dense graphs [10] :
1/(1 −

√
(1 − ε)/2) against 1/(1 −

√
(1− ε)) and 1/(1 −

√
(1− ε)/4). Fig. 6

compares these ratios.

Improved Approximation Bounds for Edge Dominating Set in Dense Graphs 119

 1

 2

 0 0.25 0.5 0.75 1

ra
tio

density

Maximal matching
Greedy

Karpinski-Zelikovsky

Fig. 6. A comparison of the ratios provided by the maximal matching heuristic, the
greedy algorithm and Karpinski and Zelikovsky’s algorithm

Acknowledgments. The authors wish to thank Martine Labbé, with whom
this research was initiated, and Hadrien Mélot, author of the GraPHedron soft-
ware [11], which was used to formulate the initial conjectures.

References

1. J. Cardinal, M. Labbé, S. Langerman, E. Levy, and H. Mélot. A tight analysis of the
maximal matching heuristic. In Proc. of The Eleventh International Computing and
Combinatorics Conference (COCOON), LNCS, pages 701–709. Springer–Verlag,
2005.

2. R. Carr, T. Fujito, G. Konjevod, and O. Parekh. A 2 1/10-approximation algo-
rithm for a generalization of the weighted edge-dominating set problem. Journal
of Combinatorial Optimization, 5:317–326, 2001.

3. M. Chleb̀ık and J. Chleb̀ıkovà. Approximation hardness of edge dominating set
problems. Journal of Combinatorial Optimization, 11(3):279–290, 2006.

4. A.V. Eremeev. On some approximation algorithms for dense vertex cover problem.
In Proc. of SOR, pages 58–62. Springer–Verlag, 1999.

5. T. Fujito and H. Nagamochi. A 2-approximation algorithm for the minimum weight
edge dominating set problem. Discrete Appl. Math., 118:199–207, 2002.

6. M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the
theory of NP-completeness. Freeman and Company, 1979.

7. E. Halperin. Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. Siam Journal on Computing, 31:1608–1623, 2002.

8. J.D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM J. Discrete
Math., 6:375–387, 1993.

9. T. Imamura and K. Iwama. Approximating vertex cover on dense graphs. In
Proc. of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
582–589, 2005.

120 J. Cardinal, S. Langerman, and E. Levy

10. M. Karpinski and A. Zelikovsky. Approximating dense cases of covering problems.
In P. Pardalos and D. Du, editors, Proc. of the DIMACS Workshop on Network
Design: Connectivity and Facilites Location, volume 40 of DIMACS series in Disc.
Math. and Theor. Comp. Sci., pages 169–178, 1997.

11. H. Mélot. Facets Defining Inequalities among Graph Invariants: the system
GraPHedron. Submitted, 2005.

12. A. Srinivasan, K. Madhukar, P. Navagamsi, C. Pandu Rangan, and M.-S. Chang.
Edge domination on bipartite permutation graphs and cotriangulated graphs.
Inf.Proc. Letters, 56:165–171, 1995.

13. M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM J. Appl.
Math., 38(3):364–372, 1980.

A Randomized Algorithm for Online Unit

Clustering�

Timothy M. Chan and Hamid Zarrabi-Zadeh

School of Computer Science, University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
{tmchan,hzarrabi}@uwaterloo.ca

Abstract. In this paper, we consider the online version of the following
problem: partition a set of input points into subsets, each enclosable by
a unit ball, so as to minimize the number of subsets used. In the one-
dimensional case, we show that surprisingly the näıve upper bound of 2
on the competitive ratio can be beaten: we present a new randomized
15/8-competitive online algorithm. We also provide some lower bounds
and an extension to higher dimensions.

1 Introduction

Clustering problems—dividing a set of points into groups to optimize various
objective functions—are fundamental and arise in a wide variety of applications
such as information retrieval, data mining, and facility location. We mention two
of the most basic and popular versions of clustering:

Problem 1 (k-Center). Given a set of n points and a parameter k, cover the
set by k congruent balls, so as to minimize the radius of the balls.

Problem 2 (Unit Covering). Given a set of n points, cover the set by balls
of unit radius, so as to minimize the number of balls used.

Both problems are NP-hard in the Euclidean plane [10,19]. In fact, it is NP-hard
to approximate the two-dimensional k-center problem to within a factor smaller
than 2 [9]. Factor-2 algorithms are known for the k-center problem [9,11] in any
dimension, while polynomial-time approximation schemes are known for the unit
covering problem [14] in fixed dimensions.

Recently, many researchers have considered clustering problems in more prac-
tical settings, for example, in the online and data stream models [4,5,12], where
the input is given as a sequence of points over time. In the online model, the
solution must be constructed as points arrive and decisions made cannot be
subsequently revoked; for example, in the unit covering problem, after a ball is
opened to cover an incoming point, the ball cannot be removed later. In the
related streaming model, the main concern is the amount of working space; as

� Work of the first author has been supported in part by NSERC.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 121–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

122 T.M. Chan and H. Zarrabi-Zadeh

points arrive, we must decide which point should be kept in memory. We focus
on the online setting in this paper.

The online version of the unit covering problem is one of the problems ad-
dressed in the paper by Charikar et al. [4]. They have given an upper bound of
O(2dd log d) and a lower bound of Ω(log d

log log log d) on the competitive ratio of de-
terministic online algorithms in d dimensions; for d = 1 and 2, the lower bounds
are 2 and 4 respectively.

In this paper, we address the online version of the following variant:

Problem 3 (Unit Clustering). Given a set of n points, partition the set into
clusters (subsets), each of radius at most one, so as to minimize the number of
clusters used. Here, the radius of a cluster refers to the radius of its smallest
enclosing ball.

At first glance, Problem 3 might look eerily similar to Problem 2; in fact, in the
usual offline setting, they are identical. However, in the on-line setting, there
is one important difference: as a point p arrives, the unit clustering problem
only requires us to decide on the choice of the cluster containing p, not the ball
covering the cluster; the point cannot subsequently be reassigned to another
cluster, but the position of the ball may be shifted.

We show that it is possible to get better results for Problem 3 than Problem 2.
Interestingly we show that even in one dimension, the unit clustering problem
admits a nontrivial algorithm with competitive ratio better than 2, albeit by
using randomization. In contrast, such a result is not possible for unit covering.
To be precise, we present an online algorithm for one-dimensional unit clustering
that achieves expected competitive ratio 15/8 against oblivious adversaries. Our
algorithm is not complicated but does require a combination of ideas and a
careful case analysis. We contrast the result with a lower bound of 4/3 and also
extend our algorithm for the problem in higher dimensions under the L∞ metric.

We believe that the one-dimensional unit clustering problem itself is theo-
retically appealing because of its utter simplicity and its connection to well-
known problems. For example, in the exact offline setting, one-dimensional unit
clustering/covering is known to be equivalent to the dual problem of finding
a largest subset of disjoint intervals among a given set of unit intervals—i.e.,
finding maximum independent sets in unit interval graphs. Higher-dimensional
generalizations of this dual independent set problem have been explored in the
map labeling and computational geometry literature [2,3,8], and online algo-
rithms for various problems about geometric intersection graphs have been con-
sidered (such as [18]). The one-dimensional independent set problem can also be
viewed as a simple scheduling problem (dubbed “activity selection” by Cormen
et al. [6]), and various online algorithms about intervals and interval graphs (such
as [1,7,16,17]) have been addressed in the literature on scheduling and resource
allocation. In the online setting, one-dimensional unit clustering is equivalent
to clique partitioning in unit interval graphs, and thus, equivalent to coloring
in unit co-interval graphs. It is known that general co-interval graphs can be
colored with competitive ratio at most 2 [13], and that, no online deterministic

A Randomized Algorithm for Online Unit Clustering 123

algorithm can beat this 2 bound [15]. To the best of our knowledge, however,
online coloring of unit co-interval graphs has not been studied before.

2 Näıve Algorithms

In this section, we begin our study of the unit clustering problem in one dimen-
sion by pointing out the deficiencies of some natural strategies.

Recall that the goal is to assign points to clusters so that each cluster has
length at most 1, where the length of a cluster refers to the length of its smallest
enclosing interval. (Note that we have switched to using lengths instead of radii
in one dimension; all intervals are closed.) We say that a point lies in a cluster
if inserting it to the cluster would not increase the length of the cluster. We say
that a point fits in a cluster if inserting it to the cluster would not cause the
length to exceed 1. The following are three simple online algorithms, all easily
provable to have competitive ratio at most 2:

Algorithm 1 (Centered). For each new point p, if it is covered by an existing
interval, put p in the corresponding cluster, else open a new cluster for the unit
interval centered at p.

Algorithm 2 (Grid). Build a uniform unit grid on the line (where cells are
intervals of the form [i, i+ 1)). For each new point p, if the grid cell containing
p is nonempty, put p in the corresponding cluster, else open a new cluster for
the grid cell.

Algorithm 3 (Greedy). For each new point p, if p fits in some existing
cluster, put p in such a cluster, else open a new cluster for p.

The first two algorithms actually solve the stronger unit covering problem
(Problem 2). No such algorithms can break the 2 bound, as we can easily prove:

Theorem 1. There is a lower bound of 2 on the competitive ratio of any ran-
domized (and deterministic) algorithm for the online unit covering problem in
one dimension.

Proof. To show the lower bound for randomized algorithms, we use Yao’s tech-
nique and provide a probability distribution on the input sequences such that
the resulting expected competitive ratio for any deterministic online algorithm
is at least 2. The adversary provides a sequence of 3 points at position 1, x, and
1 + x, where x is uniformly distributed in [0, 1]. The probability that a deter-
ministic algorithm produces the optimal solution (of size 1 instead of 2 or more)
is 0. Thus, the expected value of the competitive ratio is at least 2. ��

The 2 bound on the competitive ratio is also tight for Algorithm 3: just consider
the sequence

〈
1
2 ,

3
2 , . . . , 2k −

1
2

〉
followed by 〈0, 2, . . . , 2k〉 (where the greedy algo-

rithm uses 2k+1 clusters and the optimal solution needs only k+1 clusters). No
random combination of Algorithms 1–3 can lead to a better competitive ratio,
as we can easily see by the same bad example. New ideas are needed to beat 2.

124 T.M. Chan and H. Zarrabi-Zadeh

3 The New Algorithm

In this section, we present a new randomized algorithm for the online unit clus-
tering problem. While the competitive ratio of this algorithm is not necessarily
less than 2, the algorithm is carefully designed so that when combined with
Algorithm 2 we get a competitive ratio strictly less than 2.

Our algorithm builds upon the simple grid strategy (Algorithm 2). To guard
against a bad example like

〈
1
2 ,

3
2 , . . .

〉
, the idea is to allow two points in different

grid cells to be put in a common cluster “occasionally” (as controlled by random-
ization). Doing so might actually hurt, not help, in many cases, but fortunately
we can still show that there is a net benefit (in expectation), at least in the most
critical case.

To implement this idea, we form windows each consisting of two grid cells and
permit clusters crossing the two cells within a window but try to “discourage”
clusters crossing two windows. The details of the algorithm are delicate and are
described below. Note that only one random bit is used at the beginning.

Algorithm 4 (RandWindow). Group each two consecutive grid cells into a
window of the form [2i, 2i+2). With probability 1/2, shift all windows one unit to
the right. For each new point p, find the window w and the grid cell c containing
p, and do the following:

1: if w is empty then open a new cluster for p

2: else if p lies in a cluster then put p in that cluster

3: else if p fits in a cluster entirely inside c then put p in that cluster

4: else if p fits in a cluster intersecting w then put p in that cluster

5: else if p fits in a cluster entirely inside a neighboring window w′ and

6: w′ intersects > 1 clusters then put p in that cluster

7: else open a new cluster for p

To summarize: the algorithm is greedy-like and opens a new cluster only if no
existing cluster fits. The main exception is when the new point is the first point
in a window (line 1); another exception arises from the (seemly mysterious)
condition in line 6. When more than one cluster fits, the preference is towards
clusters entirely inside a grid cell, and against clusters from neighboring windows.
These exceptional cases and preference rules are vital to the analysis.

4 Analysis

For a grid cell (or a group of cells) x, the cost of x denoted by μ(x) is defined to
be the number of clusters fully contained in x plus half the number of clusters
crossing the boundaries of x, in the solution produced by our algorithm. Observe
that μ is additive, i.e., for two adjacent groups of cells x and y, μ(x ∪ y) =
μ(x) + μ(y). This definition of cost will be useful for accounting purposes.

A Randomized Algorithm for Online Unit Clustering 125

To prepare for the analysis, we first make several observations concerning the
behavior of the RandWindow algorithm. In the following, we refer to a cluster
as a crossing cluster if it intersects two adjacent grid cells, or as a whole cluster
if it is contained completely in a grid cell.

Observation 1

(i) The enclosing intervals of the clusters are disjoint.
(ii) No grid cell contains two whole clusters.
(iii) If a grid cell c intersects a crossing cluster u1 and a whole cluster u2, then

u2 must be opened after u1 has been opened, and after u1 has become a
crossing cluster.

Proof. (i) holds because of line 2. (ii) holds because line 3 precedes line 7.
For (iii), let p1 be the first point of u1 in c and p′1 be the first point of u1 in a

cell adjacent to c. Let p2 be the first point of u2. Among these three points, p1

cannot be the last to arrive: otherwise, p1 would be assigned to the whole cluster
u2 instead of u1, because line 3 precedes lines 4–7. Furthermore, p′1 cannot be
the last to arrive: otherwise, p1 would be assigned to u2 instead, again because
line 3 precedes lines 4–7. So, p2 must be the last to arrive. ��

For example, according to Observation 1(ii), every grid cell c must have μ(c) ≤
1 + 1

2 + 1
2 = 2.

Let σ be the input sequence and opt(σ) be an optimal covering of σ by unit
intervals, with the property that the intervals are disjoint. (This property is
satisfied by some optimal solution, simply by repeatedly shifting the intervals to
the right.) We partition the grid cells into blocks, where each block is a maximal
set of consecutive grid cells interconnected by the intervals from opt(σ) (see
Fig. 1). Our approach is to analyze the cost of the solution produced by our
algorithm within each block separately.

B1 B2 B3

Fig. 1. Three blocks of sizes 2, 3, and 1

A block of size k ≥ 2 contains exactly k−1 intervals from opt(σ). Define ρ(k)
to be the competitive ratio of the RandWindow algorithm within a block of
size k, i.e., ρ(k) upper-bounds the expected value of μ(B)/(k−1) over all blocks
B of size k. The required case analysis is delicate and is described in detail below.
The main case to watch out for is k = 2: any bound for ρ(2) strictly smaller than
2 will lead to a competitive ratio strictly smaller than 2 for the final algorithm
(as we will see in Section 5), although bounds for ρ(3), ρ(4), . . . will affect the
final constant.

126 T.M. Chan and H. Zarrabi-Zadeh

I

c2

u1 u3

c1

B

u2

c2

u1 u2

c1

B

u4u3

I

Fig. 2. Impossibility of Subcase 1.1 (left) and Subsubcase 1.3.2 (right)

Theorem 2. ρ(2) = 7/4, ρ(3) = 9/4, ρ(4) ≤ 7/3, and ρ(k) ≤ 2k/(k− 1) for all
k ≥ 5.

Proof. We first analyze ρ(2). Consider a block B of size 2, consisting of cells c1
and c2 from left to right. Let I be the single unit interval in B in opt(σ). There
are two possibilities:

– Lucky Case: B falls completely in one window w. After a cluster u has
been opened for the new point (by line 1), all subsequent points in I are put
in the same cluster u (by lines 3 and 4). Note that the condition put in line 6
prevents points from the neighboring windows to join u and make crossing
clusters. So, u is the only cluster in B, and hence, μ(B) = 1.

– Unlucky Case: B is split between two neighboring windows. We first rule
out some subcases:
• Subcase 1.1: μ(c1) = 2. Here, c1 intersects three clusters 〈u1, u2, u3〉

(from left to right), where u1 and u3 are crossing clusters and u2 is a
whole cluster (see Fig. 2, left). By Observation 1(iii), u2 is opened after
u3 has become a crossing cluster, but then the points of u2 would be
assigned to u3 instead (because line 4 precedes line 7 and u2 ∪ u3 ⊂ I
has length at most 1): a contradiction.

• Subcase 1.2: μ(c2) = 2. Similarly impossible.
• Subcase 1.3: μ(c1) = μ(c2) = 3/2. We have only two scenarios:

∗ Subsubcase 1.3.1: B intersects three clusters 〈u1, u2, u3〉, where u2

is a crossing cluster, and u1 and u3 are whole clusters. By Observa-
tion 1(iii), u1 is opened after u2 has become a crossing cluster, but
then the points of u1 would be assigned to u2 instead (because of
line 4 and u1 ∪ u2 ⊂ I): a contradiction.

∗ Subsubcase 1.3.2: B intersects four clusters 〈u1, u2, u3, u4〉, where
u1 and u4 are crossing clusters and u2 and u3 are whole clusters
(see Fig. 2, right). W.l.o.g., say u2 is opened after u3. By Observa-
tion 1(iii), u2 is the last to be opened after u1, u3, u4, but then u2

would not be opened as points in u2 may be assigned to u3 (because
lines 5–6 precedes line 7, u2 ∪ u3 ⊂ I, and c2 intersects more than
one cluster): a contradiction.

In all remaining subcases, μ(B) = μ(c1) + μ(c2) ≤ 3
2 + 1 = 5

2 .

Since the lucky case occurs with probability exactly 1/2, we conclude that
ρ(2) ≤ 1

2 (1) + 1
2 (5

2) = 7
4 . (This bound is tight.)

A Randomized Algorithm for Online Unit Clustering 127

c2c1 c3

I1 I2

B

u2u1 u3

c2

u1

c1 c3

I1 I2

u6u3 u5u4u2

B

Fig. 3. Impossibility of Cases 2.1 (left) and 2.2 (right)

Next, we analyze ρ(3). Consider a block B of size 3, consisting of cells c1, c2, c3
from left to right. (It will not matter below whether c1 and c2 fall in the same
window, or c2 and c3 instead.) Let I1, I2 be the two unit intervals in B in opt(σ)
from left to right.

– Case 2.1: μ(c2) = 2. Here, c2 intersects three clusters 〈u1, u2, u3〉 (from left
to right), where u1 and u3 are crossing clusters and u2 is a whole cluster
(see Fig. 3, left). By Observation 1(iii), u2 is opened after u1 and u3 have
become crossing clusters, but then the points of u2 would be assigned to u1

or u3 instead (because of line 4 and u1 ∪ u2 ∪ u3 ⊂ I1 ∪ I2): a contradiction.
– Case 2.2: μ(c1) = μ(c3) = 2. Here, c1 intersects three clusters 〈u1, u2, u3〉

and c3 intersects three clusters 〈u4, u5, u6〉 (from left to right), where u1, u3,
u4, u6 are crossing clusters and u2, u5 are whole clusters (see Fig. 3, right).
Then u3 cannot be entirely contained in I1: otherwise, by Observation 1(iii),
u2 is opened after u1 and u3 have become crossing clusters, but then the
points of u2 would be assigned to u3 instead. Similarly, u4 cannot be entirely
contained in I2. However, this implies that the enclosing intervals of u3 and
u4 overlap: a contradiction.

– Case 2.3: μ(c1) = 2 and μ(c2) = μ(c3) = 3/2. Here, B intersects six clusters
〈u1, . . . , u6〉 (from left to right), where u1, u3, u6 are crossing clusters and
u2, u4, u5 are whole clusters. As in Case 2.2, u3 cannot be entirely contained
in I1. This implies that u4∪u5 ⊂ I2. We now proceed as in Subcase 1.3.2. Say
u4 is opened after u5 (the other scenario is symmetric). By Observation 1(iii),
u4 is the last to be opened after u3, u5, u6, but then u4 would not be opened
as points in u4 may be assigned to u5: a contradiction.

– Case 2.4: μ(c1) = μ(c2) = 3/2 and μ(c3) = 2. Similarly impossible.

In all remaining subcases, μ(B) = μ(c1)+μ(c2)+μ(c3) is at most 2+ 3
2 +1 = 9

2
or 3

2 + 3
2 + 3

2 = 9
2 . We conclude that ρ(3) ≤ 9/4. (This bound is tight.)

Now, we analyze ρ(4). Consider a block B of size 4, consisting of cells c1, . . . , c4
from left to right. Let I1, I2, I3 be the three unit intervals in B in opt(σ) from
left to right.

– Case 3.1: μ(c1) = μ(c3) = 2. Here, c1 intersects three clusters 〈u1, u2, u3〉
and c3 intersects three clusters 〈u4, u5, u6〉 (from left to right), where u1, u3,
u4, u6 are crossing clusters and u2, u5 are whole clusters. As in Case 2.2, u3

cannot be entirely contained in I1. Thus, u4 ∪ u5 ∪ u6 ⊂ I2 ∪ I3. We now
proceed as in Case 2.1. By Observation 1(iii), u5 is opened after u4 and u6

128 T.M. Chan and H. Zarrabi-Zadeh

have become crossing clusters, but then the points of u5 would be assigned
to u4 or u6 instead: a contradiction.

– Case 3.2: μ(c2) = μ(c4) = 2. Similarly impossible.

In all remaining subcases, μ(B) = (μ(c1) + μ(c3)) + (μ(c2) + μ(c4)) ≤ (2 +
3
2) + (2 + 3

2) ≤ 7. We conclude that ρ(4) ≤ 7/3.
For k ≥ 5, we use a rather loose upper bound. Consider a block B of size k.

As each cell c has μ(c) ≤ 2, we have μ(B) ≤ 2k, and hence ρ(k) ≤ 2k/(k−1). ��

5 The Combined Algorithm

We can now combine the RandWindow algorithm (Algorithm 4) with the Grid
algorithm (Algorithm 2) to obtain a randomized online algorithm with compet-
itive ratio strictly less than 2. Note that only two random bits in total are used
at the beginning.

Algorithm 5 (Combo). With probability 1/2, run RandWindow, else run
Grid.

Theorem 3. Combo is 15/8-competitive (against oblivious adversaries).

Proof. The Grid algorithm uses exactly k clusters on a block of size k. Therefore,
the competitive ratio of this algorithm within a block of size k is k/(k − 1).

The following table shows the competitive ratio of the RandWindow, Grid,
and Combo algorithms, for all possible block sizes.

Table 1. The competitive ratio of the algorithms within a block

Block Size 2 3 4 k ≥ 5

Grid 2 3/2 4/3 k/(k − 1)
RandWindow 7/4 9/4 ≤ 7/3 ≤ 2k/(k − 1)

Combo 15/8 15/8 ≤ 11/6 ≤ 3/2 · k/(k − 1)

As we can see, the competitive ratio of Combo within a block is always at
most 15/8. By summing over all blocks and exploiting the additivity of our cost
function μ, we see that expected total cost of the solution produced by Combo
is at most 15/8 times the size of opt(σ) for every input sequence σ. ��

We complement the above result with a quick lower bound argument:

Theorem 4. There is a lower bound of 4/3 on the competitive ratio of any
randomized algorithm for the online unit clustering problem in one dimension
(against oblivious adversaries).

A Randomized Algorithm for Online Unit Clustering 129

Proof. We use Yao’s technique. Consider two point sequences P1 =
〈
1, 2, 1

2 ,
5
2

〉
and P2 =

〈
1, 2, 3

2 ,
3
2

〉
. With probability 2/3 the adversary provides P1, and with

probability 1/3 it provides P2. Consider a deterministic algorithm A. Regardless
of which point sequence is selected by the adversary, the first two points provided
to A are the same. If A clusters the first two points into one cluster, then it uses
3 clusters for P1 and 1 cluster for P2, giving the expected competitive ratio of
2
3 (3

2)+ 1
3 (1) = 4

3 . If A clusters the first two points into two distinct clusters, then
no more clusters are needed to cover the other two points of P1 and P2. Thus,
the expected competitive ratio of A in this case is 2

3 · (1)+ 1
3 · (2) = 4

3 as well. ��

6 Beyond One Dimension

In the two-dimensional L∞-metric case, we want to partition the given point
set into subsets, each of L∞-diameter at most 1 (i.e., each enclosable by a unit
square), so as to minimize the number of subsets used. (See Fig. 4.)

Fig. 4. Unit clustering in the L∞ plane

All the näıve algorithms mentioned in Section 2, when extended to two di-
mensions, provide 4-competitive solutions to the optimal solution. Theorem 1
can be generalized to a deterministic lower bound of 4 on the competitive ratio
for the unit covering problem. We show how to extend Theorem 3 to obtain a
competitive ratio strictly less than 4 for unit clustering.

Theorem 5. There is a 15/4-competitive algorithm for the online unit cluster-
ing problem in the L∞ plane.

Proof. Our online algorithm is simple: just use Combo to find a unit clustering
Ci for the points inside each horizontal strip i ≤ y < i+ 1. (Computing each Ci

is indeed a one-dimensional problem.)
Let σ be the input sequence. We denote by σi the set of points from σ that lie

in the strip i ≤ y < i+1. Let Zi be an optimal unit covering for σi. Let O be an
optimal unit covering for σ, and Oi be the set of unit squares in O that intersect

130 T.M. Chan and H. Zarrabi-Zadeh

the grid line y = i. Since all squares in Oi lie in the strip i−1 ≤ y < i+1, we have
|Zi| ≤ |Oi−1|+ |Oi|. Therefore

∑
i |Zi| ≤ 2|O|, so

∑
i |Ci| ≤ 15

8

∑
i |Zi| ≤ 15

4 |O|.
��

The above theorem can easily be extended to dimension d > 2, with ratio 2d ·
15/16.

7 Closing Remarks

We have shown that determining the best competitive ratio for the online unit
clustering problem is nontrivial even in the simplest one-dimensional case. The
obvious open problem is to close the gap between the 15/8 upper bound and
4/3 lower bound. An intriguing possibility that we haven’t ruled out is whether
a nontrivial result can be obtained without randomization at all. There is an
obvious 3/2 deterministic lower bound, but we do not see any simple argument
that achieves a lower bound of 2.

We wonder if ideas that are more “geometric” may lead to still better results
than Theorem 5. Our work certainly raises countless questions concerning the
best competitive ratio in higher-dimensional cases, for other metrics besides L∞,
and for other geometric measures of cluster sizes besides radius or diameter.

References

1. U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. In Proc.
1st Workshop Approx. Online Algorithms, volume 2909 of Lecture Notes Comput.
Sci., pages 1–12, 2003.

2. P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum inde-
pendent set in rectangles. Comput. Geom. Theory Appl., 11:209–218, 1998.

3. T. M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46:178–189, 2003.

4. M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and
dynamic information retrieval. SIAM J. Comput., 33(6):1417–1440, 2004.

5. M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algorithms for
clustering problems. In Proc. 35th ACM Sympos. Theory Comput., pages 30–39,
2003.

6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

7. L. Epstein and M. Levy. Online interval coloring and variants. In Proc. 32nd
International Colloquium on Automata, Languages, and Programming (ICALP),
volume 3580 of Lecture Notes Comput. Sci., pages 602–613, 2005.

8. T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Comput., 34:1302–1323, 2005.

9. T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In
Proc. 20th ACM Sympos. Theory Comput., pages 434–444, 1988.

10. R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering
in the plane are NP-complete. Inform. Process. Lett., 12(3):133–137, 1981.

A Randomized Algorithm for Online Unit Clustering 131

11. T. Gonzalez. Covering a set of points in multidimensional space. Inform. Process.
Lett., 40:181–188, 1991.

12. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In Proc. 41st IEEE Sympos. Found. Comput. Sci., pages 359–366, 2000.

13. A. Gyárfás and J. Lehel. On-line and First-Fit colorings of graphs. J. Graph
Theory, 12:217–227, 1988.

14. D. S. Hochbaum and W. Maas. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32:130–136, 1985.

15. H. A. Kierstead and J. Qin. Coloring interval graphs with First-Fit. SIAM J.
Discrete Math., 8:47–57, 1995.

16. H. A. Kierstead and W. A. Trotter. An extremal problem in recursive combina-
torics. Congressus Numerantium, 33:143–153, 1981.

17. R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. 5th Sympos.
Discrete Algorithms, pages 302–311, 1994.

18. M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25:59–68, 1995.

19. N. Megiddo and K. J. Supowit. On the complexity of some common geometric
location problems. SIAM J. Comput., 13(1):182–196, 1984.

On Hierarchical Diameter-Clustering, and the

Supplier Problem

Aparna Das and Claire Kenyon

Brown University, Providence RI 02918, USA

Abstract. Given a data set in metric space, we study the problem of
hierarchical clustering to minimize the maximum cluster diameter, and
the hierarchical k-supplier problem with customers arriving online.

We prove that two previously known algorithms for hierarchical clus-
tering, one (offline) due to Dasgupta and Long and the other (online)
due to Charikar, Chekuri, Feder and Motwani, are essentially the same
algorithm when points are considered in the same order. We show that
the analysis of both algorithms are tight and exhibit a new lower bound
for hierarchical clustering. Finally we present the first constant factor
approximation algorithm for the online hierarchical k-supplier problem.

1 Introduction

Clustering is the partitioning of data points into disjoint clusters (or groups)
according to similarity [1,10]. For example if the data points are books, a two
clustering might consist of the clusters fiction, and non-fiction. In this way clus-
tering can provide a concise view of large amounts of data. In many application
domains it is useful to build a partitioning of the data that starts with broad
categories which are gradually refined thus allowing the the data to be viewed
simultaneously at different levels of conciseness. This calls for a hierarchical or
nested clustering of the data where clusters have subclusters, these have sub-
subclusters, and so on. For example a hierarchical clustering might first separate
the books into clusters fiction and non-fiction, then separate the fiction cluster
into classics and non-classics and the non-fiction cluster into math, science and
history, and so on. More formally, a hierarchical clustering of n data points is
a recursive partitioning of the points into 1, 2, 3, 4, . . . , n clusters such that the
(k+1)th clustering is obtained by dividing one of the clusters of the kth cluster-
ing into two parts, thus making the clustering gradually more fine-grained ([5],
Section 10.9). This framework has long been popular among statisticians, biol-
ogists (particularly taxonomists) and social scientists [11].

A criteria commonly used to measure of the quality of a clustering is the
maximum cluster diameter, where the diameter of a cluster is the distance be-
tween the two farthest points in the cluster. The goal is to find clusterings which
minimize the maximum cluster diameter, thus similar points are placed in the
same cluster while dissimilar points are separated. In this paper, we focus on the
hierarchical diameter-clustering problem: finding a hierarchical clustering where
the value of the clustering is the maximum cluster diameter.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 132–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Hierarchical Diameter-Clustering, and the Supplier Problem 133

Every associated k-clustering of the hierarchical clustering should be close to
the optimal k-clustering, where the optimal k-clustering is the one that minimizes
the maximum cluster diameter. The competitive ratio of a hierarchical clustering
algorithm A is the supremum, over n and over input sets S of size n, of the
quantity maxk∈[1,n] Ak(S)/OPTk(S), where OPTk(S) is the value of the optimal
k-clustering of S and Ak(S) is the value1 of the k-clustering constructed by
algorithm A. Thus a hierarchical clustering algorithm with a small competitive
ratio, produces k-clusterings which are close to the optimal for all 1 ≤ k ≤ n.

The hierarchical diameter-clustering problem was studied in work by Das-
gupta and Long [4] and by Charikar, Chekuri, Feder and Motwani [2]. A simple
and commonly used algorithm for this problem is the greedy “agglomerative”
algorithm [5], which starts with n singletons clusters and repeatedly merges the
two clusters whose union has smallest diameter. However, it is proved in [4] that
this algorithm has competitive ratio Ω(log k). The authors then propose a bet-
ter, constant-factor algorithm, inspired by the “divisive” k-clustering algorithm
of Gonzales [7]. The algorithm proposed in [2] is instead ”coalescent” and may
be partially inspired by a k-clustering algorithm by Hochbaum and Shmoys [9].
Superficially the two papers look quite different. Quoting [4]: “the earlier work
of [2] uses similar techniques for a loosely related problem, and achieves the same
bounds”. Indeed, both papers present a 8 competitive deterministic algorithm
and a 2e competitive randomized variant. Additionally, the algorithm from [2]
focuses on online clustering, where points arrive one by one in an arbitrary se-
quence. We refer to the algorithm from [2] as the tree-doubling algorithm and
to the algorithm from [4] as the farthest algorithm. Here are the main results
from [4,2].

Theorem 1. For the hierarchical diameter-clustering problem,
The farthest algorithm is 8-competitive, in its deterministic form and 2e-
competitive in its randomized form [4].
The tree doubling algorithm is 8-competitive, in its deterministic form and 2e-
competitive in its randomized form [2].

Our first contribution is to formally relate the two algorithms. Their specifica-
tion contains some non-deterministic choices: the farthest algorithm starts from
an arbitrary point, and the tree-doubling algorithm considers the points in arbi-
trary order. Assuming some conditions which remove the non-determinism, we
prove that both in the deterministic and in the randomized cases the cluster-
ing produced by the farthest algorithm is always a refinement of the clustering
produced by the tree-doubling algorithm, where refinement is defined as follows:

Definition 1. ApartitionF1, F2, . . . Fl isarefinementofapartitionD1 ,D2, . . .Dk

iff ∀i ≤ l, ∃j ≤ k such that Fi ⊆ Dj.

Interestingly, both algorithms could actually be viewed as a coarser version of
the greedy agglomerative algorithm used in practice.

1 If A is randomized, then Ak(S) should be replaced by E(Ak(S)).

134 A. Das and C. Kenyon

Theorem 2 (Refinement). Assume that the first two points labeled by the
farthest algorithm have distance equal to the diameter of the input. Also assume
that the tree-doubling algorithm considers points in the order in which they were
labeled by the farthest algorithm. Moreover, in the randomized setting, assume
that the two algorithms choose the same random value r.

Then, for every k, the k-clustering produced by the farthest (deterministic or
randomized) algorithm is a refinement of the k-clustering produced by the tree-
doubling (deterministic or randomized) algorithm.

With this interpretation, we see that the competitive ratio of the farthest algo-
rithm can be seen as a corollary of the competitive ratio of the tree-doubling
algorithm. Could it be that the farthest algorithm is actually better? We an-
swer this question in the negative by proving that the analysis of the farthest
algorithm in [4] is tight.

Theorem 3 (Tightness). The competitive ratio of the deterministic farthest
algorithm is at least 8.

This means that the 8 competitive ratio upper bound for the farthest algorithm
is tight, and, by the refinement theorem, the 8 competitive ratio upper bound
for the tree-doubling algorithm is also tight. Proving tightness of the randomized
variants are open.

Can the competitive ratio be improved? We turn to the question of what is
the best competitive ratio achievable for any hierarchical clustering algorithm
with no computational restrictions. In other words, what is the best we can
expect from a hierarchical clustering algorithm if it is allowed to have non-
polynomial running time. We prove that no deterministic algorithm can achieve
a competitive ratio better than 2, and no randomized algorithm can achieve
competitive ratio better than (3/2). (Note that the lower bounds proved in [2]
apply to the online model only and thus are incomparable to our lower bounds.)

Theorem 4 (Hierarchical lower bound). No deterministic (respectively ran-
domized) hierarchical clustering algorithm can have competitive ratio better than
2 (respectively better than 3/2), even with unbounded computational power.

How general are these techniques? In our final contribution, we extend the tree-
doubling algorithm to design the first constant factor approximation algorithm
for the online hierarchical supplier problem.

In the standard (offline, non hierarchical) k-supplier problem, we are given a
set S of suppliers and a set C of customers, with customer-supplier distances. We
wish to select a set Sk of k suppliers and an assignment of each customer c to a
supplier f(c) in Sk so as to minimize the maximum distance from any customer to
its supplier, maxc∈C d(c, f(c)). For example, the suppliers are the fixed database
templates against which we are comparing the data (customers) and which we
use for classification. A 3-approximation algorithm for the k-supplier problem is
mentioned in [8].

In the more difficult online hierarchical setting, the set S of suppliers is known
in advance but new customers arrive as time goes on, so C is a sequence of

On Hierarchical Diameter-Clustering, and the Supplier Problem 135

customers. When a new customer arrives, it is either assigned to one of the
existing open suppliers, or it opens a new supplier. If opening a new supplier
results in more than k open suppliers then two existing open suppliers merge
their customer lists, and one of them closes. This requirement ensures that the
hierarchical condition is satisfied, i.e that Si−1 ⊆ Si and that for each supplier
s ∈ Si \ Si−1, all the customers assigned to s are assigned to the same supplier
in Si−1. For example, suppose customers arrive over time to use resources and
we would like to dynamically increase/decrease the total number of resources
allocated without having to do extensive recomputation. Using the hierarchical
supplier solution, this only requires splitting/merging the customers currently
assigned to one of the resources. The online hierarchical model is an increasingly
important framework for clustering problems, when large amounts of data are
gathered over time and needs to be categorized on the fly (see [13] for example).

Using the tree-doubling algorithm as a subroutine, we obtain a constant-factor
approximation algorithm for the online hierarchical supplier problem. (Note that
in the offline case, we could equivalently have used the farthest algorithm as a
subroutine. In fact, we conjecture that in the offline case, a similar result may
also be obtainable using methods from [3,12].)

Theorem 5 (Online hierarchical supplier). For the online hierarchical k-
supplier problem, there exist a deterministic 17-approximation algorithm and a
randomized (1 + 4e) = 11.87-approximation algorithm.

2 Proof of the Refinement Theorem

2.1 Review of the Farthest Algorithm from [4]

The input is a set of n points {x1, . . . xn} with associated distance metric d. The
algorithm has three main steps:

Labeling the points. Take an arbitrary point and label it 1. Give label i for
i ∈ {2, . . . , n}, to the point which is farthest away from the previously labeled
points. Let di denote the distance from i to the previous i− 1 labeled points, i.e
di = min1≤j≤i−1 d(, sothesearethedirections : i, j). Thus d2 = d(1, 2).

Assigning levels to labelled points. For labelled point 1, set level(1) = 0.
For labelled point i ∈ {2, . . . , n}, set level(i) = �log2(d2/di)�+ 1.

Organizing labelled points into a tree. Organize the points into a tree
referred to as the Π ′-tree. Place point 1 as the root Π ′-tree. For each point
i ∈ {2, . . . , n}, define its parent, π′(i), to be the point closest to i among the
points with level strictly less than level(i). Insert points i > 1 into Π ′-tree in
order of increasing levels connecting each point i with an edge to its parent π′(i).

The hierarchical clustering is represented implicitly in the Π ′-tree. To obtain
the k-clustering (of the hierarchical clustering) remove edges (i, π′(i)), for i ∈
{2, . . . , k} from the Π ′-tree. Deleting these k − 1 edges splits the Π ′-tree into k

136 A. Das and C. Kenyon

connected components such that points {1, . . . , k} are in separate components.
The components are returned as the k clusters.

It is easy to verify that this defines a hierarchical clustering, and [4] proves
that it satisfies the following properties. The distances (di)i are a monotone
non-increasing sequence, and the levels (level(i))i are a monotone non-decreasing
sequence. The definition of levels imply the following bounds on di.

d2/2level(i) < di ≤ d2/2level(i)−1 . (1)

In addition [4] proves that:

d(i, π′(i)) ≤ d2/2level(i)−1 . (2)

[4] also present a randomized variant of the farthest algorithm, where the
only difference is in the definition of levels. A value r is chosen uniformly at
random from the interval [0, 1], and the levels are now defined by: level(1) = 0
and level(i) = �ln(d2/di) + r�+ 1. The monotonicity properties are unchanged;
and the two inequalities are replaced by the following.

erd2/e
level(i) < di ≤ erd2/e

level(i)−1 and d(i, π′(i)) ≤ erd2/e
level(i)−1 . (3)

2.2 Review of the Tree-Doubling Algorithm from [2]

Here the input consists of a sequence of n points {x1, . . . xn} with associated
distance metric d. Let Δ denote the diameter of the points. The algorithm con-
siders the points one by one in an online fashion and maintains a certain infinite
rooted tree which we refer to as the T+ tree. Each node in T+ is associated to a
point, and the set of nodes associated to the same point forms an infinite path
in the tree. The first point is placed at depth 0 as the root of T+, and a copy of
this point is placed at each depth d > 0 along with a parent edge to the copy at
depth d− 1. When a new point p arrives it is inserted at a depth dp, as defined
by the insertion rule given below. A copy of p is placed at each depth d > dp

with a parent edge to the copy of p at depth d− 1.

(Insertion rule). Find the largest depth d with a point q such that dist(p, q) ≤
Δ/2d. Point p is inserted into depth dp = d + 1 with a parent edge to q.

To obtain a k-clustering, find the maximum depth d in T+ which has at most k
nodes. Delete all tree nodes at depth less than d. This leaves ≤ k subtrees rooted
at the points at depth d. Delete all multiple copies of points from the subtrees
and return these as the clusters.

By [2], the following properties are maintained as nodes are added to T+ :

Property 1 (Close-parent property). Points at depth d are at distance at
most Δ/2d−1 from their parents.

Property 2 (Far-cousins property). Points at depth d are at distance greater
than Δ/2d from one another.

On Hierarchical Diameter-Clustering, and the Supplier Problem 137

[2] also presents a randomized variant, where the only difference is in the
insertion rule. A value r is chosen uniformly at random from the interval [0, 1],
and the insertion rule is now: Find the largest depth d that contains a point q
such that dist(p, q) ≤ erΔ/ed. Point p is inserted into depth dp = d + 1 with a
parent edge to q.

The properties are replaced by the following.

Property 3. Points at depth d are at distance at most erΔ/ed−1 from their par-
ents, and at distance greater than erΔ/ed from one another.

2.3 Proof of the Refinement Theorem, Deterministic Version

To relate the farthest and tree doubling algorithms we first make some assump-
tions about their nondeterministic choices. The farthest algorithm starts its la-
belling at an arbitrary point. We will assume the first point labelled by the
farthest algorithm is at distance Δ from the second point labelled by the algo-
rithm and thus d2 = Δ. The tree doubling algorithm receives its input points
in an arbitrary order. We assume that points arrive to the tree-doubling algo-
rithm in the order they are labeled by the farthest algorithm. Lastly we as-
sume that ties are broken in the same way by the two algorithms. Specifically if
points q, q′ are tied to be a parent, the point with the larger label (in the far-
thest algorithm) or the point which arrived first (in the tree doubling algorithm)
is favored.

Our proof is based on the alternative construction of the tree doubling T+

tree, given in algorithm 1, which builds a tree T based on the farthest algo-
rithm’s Π ′ tree. We prove that our construction is consistent with the tree dou-
bling algorithm’s insertion rule and hence T could have legitimately been con-
structed by the tree-doubling algorithm. Finally we argue that the k-clustering
defined by the Π ′ tree is a refinement of the k-clustering defined by T . Given
the Π ′ tree of the farthest algorithm, the following algorithm constructs a T+

tree. Fig. 1 shows the Π ′ tree and the corresponding tree T constructed by
algorithm 1.

Algorithm 1: Given Π ′ construct T+

(1) Let T be an empty tree
(2) Let � = the maximum level of the points in Π ′

(3) For each level i = 0, . . . �
(4) Let Li denote the points with level i
(5) Let S = L0 ∪ L1 ∪ . . . ∪ Li

(6) Insert each p ∈ S at depth i of T with an edge to:
(7) The copy of π′(p) at depth i − 1, if level(p) = i or
(8) The copy of p at depth i − 1, if level(p) �= i
(9) Return T

Let T be the tree constructed by Algorithm 1.

138 A. Das and C. Kenyon

1

2

3 4 LEVEL 3

LEVEL 2

LEVEL 1

LEVEL 0

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

LEVEL 0

LEVEL 4

1

4 3

2

2

2

2

1

1

4 31

1

Π ′ Tree T Tree

Fig. 1. Π ′-Tree to C+ Tree

Lemma 1. T satisfies the close-parent property.

Proof. Let p be any point at depth d in T .
If d
= level(p), then by step (8) of algorithm 1, the parent of p in T is the

copy of p at depth d− 1. Thus the close parent property follows trivially in this
case since d(p, p) = 0.

Otherwise, d = level(p). By step (7) of algorithm 1 parent(p) = π′(p). Apply-
ing equation 2 with d2 = Δ, we have that, d(p, π′(p)) ≤ Δ/2level(p)−1. Substi-
tuting level(p) = d and π′(p) = parent(p), we get: d(p, parent(p)) ≤ Δ/2d−1.

Lemma 2. T satisfies the insertion rule.

Proof. By steps (3-6) of algorithm 1 if level(p) = d, then p appears in T for the
first time at depth d and its parent q is π′(p).

Since level(π′(p)) < level(p), a copy of π′(p) must be at depth d − 1 in T .
Since T satisfies the close-parent property, d(p, π′(p)) ≤ Δ/2d−1. Thus π′(p) is
qualified (distance-wise) to be the parent of p according to the insertion rule.

To show that insertion rule is satisfied we need to show that when p first
arrives, there was no other point at a depth higher than d − 1 which was close
enough to p to be its parent. Let q′ be any point at depth j > d − 1, which
arrived before p. Note that q′ ∈ {1, . . . , p− 1} since by assumption points arrive
in the order they are labelled by the farthest algorithm. We need to show that
d(p, q′) > Δ/2j . Note that by definition of dp, d(p, q′) ≥ minj∈[1,p−1] d(p, j) = dp.
Using the fact that level(p) = d and equation 1 with d2 = Δ we get

dp > Δ/2level(p) = Δ/2d .

Combining the two statements above we have that

d(p, q′) ≥ dp > Δ/2d ≥ Δ/2j ,

where the last inequality follows since j > d− 1 ⇒ j ≥ d. Since d(p, q′) > Δ/2j

point q′ cannot be parent of p.

On Hierarchical Diameter-Clustering, and the Supplier Problem 139

We have shown that T satisfies the insertion rule and thus it can be constructed
by the tree-doubling algorithm when the assumptions of Theorem 2 hold. Thus
for the rest of the proof assume that the tree doubling algorithm constructs T .

Given k, the farthest algorithm removes exactly k − 1 edges from the Π ′

tree and returns a clustering F (k) with exactly k clusters. The tree-doubling
algorithm looks for the deepest level of the T tree with at most k nodes and thus
returns a clustering D(k) with ≤ k clusters. We first show the two clusterings
D(k) and F (k) are equivalent when they both have exactly k clusters. The
refinement property then follows easily.

Lemma 3. Let k be such that the tree doubling tree T has a depth d with exactly
k vertices, then the clusterings F (k) and D(k) are the same.

Proof. Let F1, . . . Fk be the clusters returned by the farthest algorithm, where
Fi contains point i. Let D1, . . .Dk be the clusters returned by the tree-doubling
algorithm, where the cluster are defined by the k points at depth d in T . Since
depth d contains exactly k vertices, the monotonicity of (level(i))i implies that
these points must be exactly the points 1, . . . , k. We will show that for any
1 ≤ i ≤ k if a point, x, is in Di then x ∈ Fi. Since the k-clustering is a partition
of the points, this immediately implies that Di = Fi for all 1 ≤ i ≤ k.

Let x be a point in Di. Since Di contains the points in the subtree under
i, there is a i-to-x path P = (i = p1, p2, . . . pl = x) in T . Let S = (i =
s1, s2, . . . sm = x) be the sequence of points obtained by deleting all repeti-
tions of points from P . By the construction of T we have that sj = π′(sj+1)
for all 1 ≤ j ≤ m which implies that S is a valid i-to-x path in the Π ′-tree.
Since depth d of T contains all points in {1, . . . , k}, only point i can appear in
sequence S. Thus none of the points {1, . . . , k} except i are in the i-to-x path in
Π ′ tree. This implies that x ∈ Fi.

Corollary 1. Let k1 be an input such that D(k1) has strictly less than k1 clus-
ters. Let k2 be the minimum input such that k2 > k1 and D(k2) has exactly
k2 clusters. Then D(k1) F (k1) D(k2), where A B stands for “B is a
refinement of A”.

Proof. Let k < k1 be the number of clusters in D(k1). Thus D(k1) = D(k)
and T has a level with exactly k vertices. By Lemma 3, F (k) = D(k). By
definition of a hierarchical clustering, F (k) F (k1) as k < k1. Thus we have
D(k1) = D(k) = F (k) F (k1).

Similarly, on input k2, the tree-doubling algorithm produces a clustering with
exactly k2 clusters which implies that T has a level with exactly k2 vertices. By
Lemma 3, F (k2) = D(k2). By definition of a hierarchical clustering, F (k1)
F (k2) as k1 < k2. Thus we have F (k1) F (k2) = D(k2).

2.4 Proof of the Refinement Theorem, Randomized Version

Suppose the random parameter r in the randomized versions of the farthest and
the tree-doubling algorithms are chosen to be the same value. Then Lemma 3

140 A. Das and C. Kenyon

and Corollary 1 also apply to the randomized algorithms. The only change to
the analysis is to use inequalities 3 instead of inequalities 2 and 1 in the proof
of correctness for algorithm 1.

2.5 Nondeterministic Choices

To prove the refinement theorem, we made some assumptions about the nonde-
terministic choices of the two algorithms. But how much do these choices affect
the performance of the algorithms?

The first point chosen by the farthest algorithm determines the value of d2

and this in turn determines the level threshold of the Π ′ tree, i.e level one con-
tains the points which are at distance [d2, d2/2) from previously labelled points
and level two contains points which are at distance [d2/2, d2/22) from previ-
ously labelled points and so on. The initial point can affect the performance
of the farthest algorithm by a factor up to 8 as demonstrated on the example
we present in Section 3, Fig. 2. On this example when the farthest algorithm
chooses initial point p1 it outputs a 5-clustering which has cost arbitrarily close
to 8OPT. However the optimal 5-clustering can be obtained if p4 is chosen as the
initial point.

Points arrive to the tree doubling algorithm in an arbitrary order. How much
can the ordering of points affect the performance of the tree doubling algorithm?
By the refinement theorem, if points arrive in the order labelled by the farthest
algorithm, there is always a way to break ties so that the tree doubling clustering
is no better than the farthest clustering. However the arrival order of point can
help the tree doubling algorithm perform better than the farthest algorithm.
We demonstrate this on the tight example presented in 3, Fig. 2. If the points
arrive as labelled by the farthest algorithm, the tree doubling and the farthest
5-clustering have cost 8OPT, while if the order starts with p2, p5, p

′
5, then tree

doubling can construct the cost 2OPT, 5-clustering:{(
p2

)
,
(
p3

)
,
(
p′3
)(
p1, p4, p5, q1 . . . qn

)
,
(
p′1, p

′
4, p

′
5, q

′
1 . . . q

′
n

)}
.

Combining these observations, we see that the farthest algorithm can produce
clusterings which are 8 times better than the tree doubling algorithm clusterings
if the farthest algorithm starts with the best possible initial point and the tree
doubling is given its points in the worst possible ordering. On the other hand
the tree doubling clusterings can be 4 times better than the farthest clusterings
when its points are ordered favorably and the farthest algorithm starts at the
worst possible initial point.

3 Proof of the Tightness Theorem

We will prove that, for any ε > 0, there exists an input on which the farthest
algorithm produces a hierarchical clustering where the k = 5 clustering is worse
than the optimal 5-clustering by a factor of at least 8− 4ε.

On Hierarchical Diameter-Clustering, and the Supplier Problem 141

. ..
. ..

1/21

4

4

2

1/2

2

1/21
2

1

1/21

4

4

2 q2p5

1/2n−1

1/2i−1

2 + ε

p′
1

q′
1 q′

2 q′
n

1/2n−11/2i−1

1/2i−1

1/2n−1

2 + ε

p2

p3 qn
1/2i−1 1/2n−1

qi

p1

p′
5 q′

ip′
3

p′
4

p4 q1

Fig. 2. Graph for Tight Example

Choose any ε > 0 and let n = 2 log(1/ε). The input set S will have 2n +
9 points; nine standard points, p1, p

′
1, p2, p3, p

′
3, p4, p

′
4, p5, p

′
5, and 2n additional

points q1, q′1, q2, q′2, . . . qn, q′n with distance as shown in Fig. 2. Note that the
distance from qi to qi+1 and the distance from p1 to qi for i ∈ [1, n− 1] is 1/2i

and the same holds for the distance from q′i to q′i+1 and the distance from p′1 to
q′i. It is easy to verify that the optimal 5-clustering of S is:{(

p1, p5, q1, q2 . . . qn
)
,
(
p′1, p

′
5, q

′
1, q

′
2, . . . , q

′
n

)
,
(
p2

)
,
(
p3, p4

)
,
(
p′3, p

′
4

)}
where clusters

(
p3, p4

)
and
(
p′3, p′4

)
have the largest diameter of 2+ ε = OPT(5).

We carry out the steps of farthest algorithm and show that its 5-clustering
can have a cluster of diameter 16 − (2/2n−1). The algorithm starts with point
p1 and obtains the ordering: p1, p

′
1, p2, p3, p

′
3, p4, p

′
4, p5, p

′
5, q1, q

′
1, . . . qn, q

′
n. Thus

d(p1, p
′
1) = 16 = Δ is used to define the levels for the points. The algorithm

connects point p
= p1 to its parent π′(p), the closest point to p at a strictly
lower level. The resulting Π ′-tree is shown in Fig. 3.To obtain a 5-clustering,
the algorithm removes edges (pi, π

′(pi)) for pi ∈ {p′1, p2, p3, p
′
3} which yields the

clustering:{(
p1

)
,
(
p′1
)
,
(
p3

)(
p′3
)
,
(
p4, p5, q1 . . . qn, p2, p

′
4, p

′
5, q1 . . . q

′
n,
)}

The diameter of the last cluster is the distance from qn to q′n which is 16 −
2/2n−1 = 16− 4ε2 = (8− 4ε)OPT(5). This proves the Tightness theorem.

142 A. Das and C. Kenyon

4

2

1

1

816

4

1/22

1/24

4

1/2i−1 1/2n−1

1/2i−1 1/2n−1qi

p1 p′
1 p2

p′
4 p′

5 q′
1 q′

2 q′
i

q′
n

qnq2q1p5p4

p′
3

p3

Fig. 3. Π-Tree for Tight Example

4 Proof of the Hierarchical Lower Bound Theorem

We demonstrate an input set S on which every deterministic algorithm obtains
a competitive ratio at least 2 and every randomized algorithm obtains a compet-
itive ratio at least 1.5. S has points pij for i, j ∈ [1, 4] and i
= j with distances,
d(pij , pji) = 1 and d(pij , pik) = 2 as shown in Fig. 4. (This resembles but is not
the same as the example in [2], where the authors focus on the online setting).
It is easy to verify that the optimal 6-clustering consists of the six pairs pijpji

each of diameter 1. Let Bi = {pij |j ∈ [1, 4], i
= j}. Observe that Bi for i ∈ [1, 4]
is the optimal 4-clustering with each cluster having diameter 2.

21

23

24

13

14

12 31

32

34

42

41

43

2 2
2 2

1

1

1

1

1
1

2

2

2

2

2

2

2

2

Graph of Points

14

41

24

42

23

32

12

21

13

31

Optimal 6−Clustering

42

41

43

31

32

34

21

23

24

12

13

14

Optimal 4−Clustering

Fig. 4. Lower Bound Example

4.1 The Deterministic Lower Bound

Let A be any deterministic hierarchical clustering algorithm.
Case 1: Suppose A produces the optimal 6-clustering. Then A’s clusters must
be the 6 pairs pijpji. Since A is a hierarchical clustering algorithm, it must
merge some of these pairs to obtain the 4-clustering. Merging any two of these
pairs results in a cluster of diameter 4, giving us a competitive ratio of at least
A(4)/OPT(4) = 4/2 = 2.
Case 2: Suppose A does not produce the optimal 6-clustering. Then some cluster
in A’s 6-clustering consist of points other than some pair pijpji. This cluster must
have diameter ≥ 2. Thus the competitive ratio for A is at least A(6)/OPT (6) ≥
2/1 = 2.

On Hierarchical Diameter-Clustering, and the Supplier Problem 143

4.2 The Randomized Lower Bound

Let B be any randomized hierarchical clustering algorithm. Let p be the prob-
ability that B outputs the optimal 6-clustering. Thus the maximum diameter
is 1 with probability p, and at least 2 with probability 1 − p. (See analysis for
the deterministic scenario). We compute the expected competitive ratio of B for
k = 4 and k = 6, and by definition, the expected competitive ratio of B over all
values of k is at least the maximum of these two values.

For k = 4 the competitive ratio is

E(B4(S))/OPT4(S) ≥ (4p+ 2(1− p))/2 = 1 + p .

where the first inequality follows from the fact that when B chooses the optimal
6-clustering, its 4-clustering will have a cluster of diameter ≥ 4.

For k = 6 the competitive ratio is

E(B6(S))/OPT6(S) ≥ (p+ 2(1− p))/1 = 2− p .

The expected competitive ratio is max(1 + p, 2− p) ≥ 1.5.

5 Proof of the Online Hierarchical Supplier Theorem

Our online algorithm for k-supplier will use the (online) tree-doubling algorithm
as a subroutine. Note that we could equivalently have used the farthest algorithm
if we were designing an off-line algorithm.

5.1 The Algorithm

We denote a supplier as active if it is the closest supplier to one of the current
customers. Throughout the algorithm, we will maintain a hierarchical clustering
of the active suppliers by inserting them into the (deterministic or randomized)
tree-doubling algorithm tree T+.

When a new customer c arrives, we find the supplier s who is closest to c. If
s is not yet in T+, we mark s as an active supplier and add s to T+ (using the
deterministic or randomized tree-doubling algorithm).

To obtain a hierarchical k-supplier solution, find the largest depth d in T+

which contains k′ ≤ k active suppliers s1, s2, . . . sk′ and output these suppliers.
For each customer c with closest supplier s0, assign c to si for i ∈ [1, k′], if s0 = si

or if s0 is in the subtree below si in depth d of T+.

5.2 The Deterministic Analysis

Suppose d is the largest depth containing at most k active suppliers. Let s (at
depth d) be the supplier that customer c was assigned to and s0 be the active
supplier that c is closest to. Then there is a s0-to-s path in T+. Let s0, s1, . . . sp

144 A. Das and C. Kenyon

be the sequence of the suppliers on the s0-to-s path, where sp = s. By the
triangular inequality, the distance from c to s can be bounded as:

d(c, s) ≤ d(c, s0) +
p−1∑
i=0

d(si, si+1) . (4)

Let Δ be the maximum distance between any two suppliers. By the close-
parent property of the tree-doubling algorithm, the distance from si to si+1 for
i ∈ [0, p − 1] is at most Δ/2depth(si)−1. Since the depths of suppliers on the
s0-to-s path are strictly decreasing, and sp−1 is on level d + 1, we have that,

p−1∑
i=0

d(si, si+1) ≤
Δ

2depth(sp−1)−1
(1 + 1/2 + 1/4 + . . .) ≤ 2

Δ

2d
. (5)

Now we derive two lower bounds for OPTk. First, since s0 is the closest
supplier to c, we have that OPTk ≥ d(c, s0). Next, since d is the largest depth
in T+ with at most k active suppliers, depth d + 1 contains at least k + 1
active suppliers, s1, s2, . . . , sk+1. Using Lemma 4, we have OPTk ≥ δ/4 where
δ = min1≤i<j≤k+1 d(si, sj) . By the Far-Cousins property of T+, δ is at least
Δ/2d+1. Applying these bounds we obtain

d(c, s) ≤ d(c, s0) +
2Δ

2d
≤ OPTk + 4δ ≤ 17 OPTk .

Lemma 4. Let d be the largest depth in T+ with at most k active suppliers and let
s1, s2, . . . , sk+1 be active suppliers at depth d + 1. Let δ = min1≤i<j≤k+1 d(si, sj),
and OPTk be the maximum distance from a customer to a supplier in the optimal
k-supplier solution. Then δ ≤ 4OPTk.

Proof. Since suppliers s1, s2, . . . , sk+1 are active, each of them is the closest
supplier to some customer ci. The solution OPTk uses at most k suppliers, so
it will have to assign two of those customers, ci and cj , to the some supplier s∗.
Thus,

OPTk ≥ max(d(ci, s∗), d(cj , s∗)) ≥ (d(ci, s∗) + d(cj , s∗))/2 .

Applying the triangle inequality on d(si, sj) we have that:

d(si, sj) ≤ d(si, ci) + d(ci, s∗) + d(s∗, cj) + d(cj , sj)

Using the fact that si is the closest supplier to ci and sj is closest for cj , we
obtain

δ ≤ d(si, sj) ≤ 2(d(ci, s∗) + d(cj , s∗)) ≤ 4OPTk .

5.3 The Randomized Analysis

Equation 4 still holds. Instead of Equation 5 we now have:

p−1∑
i=0

d(si, si+1) ≤
erΔ

edepth(sp−1)−1
(1 + 1/e + 1/e2 + . . .) ≤ e

e− 1
erΔ

ed
.

On Hierarchical Diameter-Clustering, and the Supplier Problem 145

Now, by Property 3 the minimum distance δ between s1, . . . , sk+1 satisfies
erΔ/ed+1 < δ ≤ erΔ/ed. Write δ = eεerΔ/ed+1, where ε is distributed uni-
formly in [0, 1). In expectation we have

E(erΔ/ed+1) = δ

∫ 1

0

e−εdε = δ
e− 1

e
.

Lemma 4 still holds, so we finally get:

E(d(c, s)) ≤ d(c, s0)+
e

e− 1
E(

erΔ

ed
) ≤ OPTk +

e

e− 1
eδ

e− 1
e

≤ (1+4e) OPTk .

References

1. P. Arabie, L. J. Hubert and G. De Soete, editors. Clustering and Classification.
World Scientific, River Edge, NJ, 1998.

2. M. Charikar, C. Chekuri, T. Feder and R. Motwani. Incremental clustering and
dynamic information retrieval. In Proceedings of the 29th Annual ACM Symposium
on the Theory of Computing, pages 626–635, 1997.

3. Marek Chrobak, Claire Kenyon, John Noga and Neal E. Young. Online Medians
via Online Bribery. Lecture Notes in Computer Science 3887:311-322 (2006); Latin
American Theoretical Informatics, 2006.

4. S. Dasgupta, P. Long. Performance guarantees for hierarchical clustering. Journal
of Computer and System Sciences, 70(4):555-569, 2005.

5. R. O. Duda, P. E. Hart, and D. G. Sork. Pattern Classification. Wiley and Sons,
2001.

6. M. E. Dyer and A. M. Frieze. A simple heuristic for the p-center problem. Opera-
tions Research Letters., 3:285–288, 1985.

7. T. F. Gonzalez. Clustering to Minimize the Maximum Intercluster Distance. In
Proceedings of the 17th Annual ACM Symposium on the Theory of Computing,
38:293-306, 1985.

8. D.S Hochbaum. Various Notions of Approximations: Good, Better, Best and More.
In D.S Hochbaum, editor, Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company. 1996.

9. Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center
problem. Mathematics of Operations Research, 10:180–184, 1985.

10. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, En-
glewood Cliffs, NJ, 1988.

11. L. Kaufman and Peter J. Rousseeuw, Finding Groups in Data: An Introduction to
Cluster Analysis, Wiley, NY, 1990.

12. Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajamaran, and David P.
Williamson. A general approach for incremental approximation and hierarchical
clustering. In Proceedings of the seventeenth annual ACM-SIAM Symposium on
Discrete algorithm (SODA), pages 1147-1156, 2006.

13. NSF Workshop Report on Emerging Issues in Aerosol Particle Science
and Technology (NAST), UCLA, 2003, Chapter 1, Section 18, “Improved
and rapid data analysis tools (Chemical Characterization)”. Available at
http://www.nano.gov/html/res/NSFAerosolParteport.pdf.

Bin Packing with Rejection Revisited

Leah Epstein

Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

Abstract. We consider the following generalization of bin packing. Each
item is associated with a size bounded by 1, as well as a rejection cost,
that an algorithm must pay if it chooses not to pack this item. The cost
of an algorithm is the sum of all rejection costs of rejected items plus the
number of unit sized bins used for packing all other items.

We first study the offline version of the problem and design an AP-
TAS for it. This is a non-trivial generalization of the APTAS given by
Fernandez de la Vega and Lueker for the standard bin packing problem.
We further give an approximation algorithm of absolute approximation
ratio 3

2
, this value is best possible unless P = NP.

Finally, we study an online version of the problem. For the bounded
space variant, where only a constant number of bins can be open simul-
taneously, we design a sequence an algorithms whose competitive ratios
tend to the best possible asymptotic competitive ratio. We show that
our algorithms have the same asymptotic competitive ratios as these
known for the standard problem, whose ratios tend to Π∞ ≈ 1.691. Fur-
thermore, we introduce an unbounded space algorithm which achieves a
much smaller asymptotic competitive ratio. All our results improve upon
previous results of Dósa and He.

1 Introduction

In the classical bin packing problem [17,4,3], a set (or sequence) of items, which
are positive numbers no larger than 1, are to be packed into unit sized bins. The
sum of items packed into one bin cannot exceed its size and the existing supply
of such bins is unbounded. Each item must be packed into exactly one bin, min-
imizing the number of bins used. However, in many applications, it is possible to
refuse to pack an item. This rejection needs to be compensated, and costs some
given amount for each item, which is called the “rejection cost” of the item. In an
application where bins are disks and items are files to be saved on these disks,
the rejection cost of a file is the cost of transferring it to be saved on alternative
media. In another application, where bins are storage units, a rejection cost is
paid to a disappointed customer whose goods cannot be stored.

We call the packing problem studied in this paper bin packing with rejec-
tion. In this problem, an item has both a size and a rejection cost associated
with it. Each item must be either assigned to a bin or rejected. A bin is empty
if no item is assigned to it, otherwise it is used. Unlike the standard problem
where the goal is to minimize the number of used bins, the target function in the
problem with rejection is the sum of the following two amounts. The first one

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 146–159, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Bin Packing with Rejection Revisited 147

is the sum of all rejection costs of rejected items. The second one is the number
of bins used to pack the accepted items, i.e., items which are not rejected. The
goal is to minimize this sum. Clearly, standard bin packing is a special case of
bin packing with rejection, where all rejection costs are larger than 1.

We denote the set of items by I. For an item i ∈ I, we denote its size by pi

and its rejection cost by ri. In this paper we study both offline and online algo-
rithms for bin packing with rejection. In online environments of the bin packing
problem, we receive the items as a sequence σ. Every element in the sequence is
a pair, giving the size and rejection cost of this element. Thus, we get a sequence
(p1, r1), (p2, r2) . . . (pn, rn), and the set I contains the same elements as σ. The
elements arrive one by one. Upon arrival, an item must be either assigned or
rejected. Such a decision is irrevocable.

The bin packing problem with rejection was introduced and studied by Dósa
and He [6]. They suggested an interesting application for the offline version of
the problem which is related to caching. Items are files which would need to be
used in a local system. Each file would be needed exactly once at a later time.
A file can be downloaded in advance to this local system, and stored on local
web servers. The process of downloading a file from a local server (when it is
actually needed) is fast, but stored files consume space on the servers. In this
case the incurred cost results from the cost of local servers. The second option
is to download a file only when it is actually needed, without storing it first. In
the last case, a rejection cost occurs which is associated with the communication
cost of downloading the file from an external server. An algorithm would need
to have a cost as low as possible with respect to the two types of costs.

For an algorithm A, we denote its cost by A as well. The cost of an optimal
offline algorithm that knows the complete sequence of vertices is denoted by
OPT. In this paper we mostly consider the asymptotic competitive ratio and
the asymptotic approximation ratio criteria. When we discuss the performance
guarantees of algorithms, we use the term “competitive” for online algorithms
and the term “approximation” for offline algorithms. The asymptotic measures
are standard measures of algorithm quality for bin packing problems. For a
given input σ, let A(σ) be cost of algorithm A on σ. Let OPT(σ) be the min-
imum possible cost of serving all items in σ (i.e., the cost of packing a subset
of the items plus the cost of rejecting all other items). The asymptotic approxi-
mation ratio (or asymptotic competitive ratio) for an algorithm A is defined to
be RA = lim sup

n→∞
sup

σ

{
A(σ)

OPT(σ) |OPT(σ) = n
}
. We also consider the absolute

approximation ratio in this paper. The absolute approximation ratio (or com-
petitive ratio) of A is the infimum R such that for any input, A ≤ R · OPT.
If the approximation (competitive) ratio of a polynomial time offline (online)
algorithm is at most R, we say that it is a R-approximation (R-competitive),
this applies to both types of approximation and competitive ratios.

Previous work. In [6], Dósa and He study four variants of bin packing with
rejection. These are offline and online bin packing with respect to the absolute
and the asymptotic measures. For the offline problem, the approximation ratios

148 L. Epstein

of the algorithms shown in the paper are 2 and 3
2 , where the latter applies only

to the asymptotic measure. Moreover, it is mentioned that unless P = NP, no
algorithm can have absolute approximation ratio of less than 3

2 (due to a simple
reduction from the partition problem). Note that this holds already for stan-
dard bin packing.

For the online problem, they design an algorithm of absolute competitive ra-
tio 2.618 and an algorithm of asymptotic competitive ratio 1.75 + ε. They show
a lower bound of 2.343 for the first online variant, and mention that the lower
bound of 1.5401 for the standard online bin packing problem, due to Van Vliet
[18] is the best lower bound known for the second variant.

As the standard bin packing problem is a special case of the problem with re-
jection, we next compare the above results with these known for the standard bin
packing problem. The offline bin packing problem admits an APTAS (Asymp-
totic Polynomial Time Approximation Scheme), as was shown by Fernandez de
la Vega and Lueker [5]. This scheme returns for every given value ε > 0 an algo-
rithm with asymptotic approximation ratio 1+ε. The algorithm has polynomial
running time if ε is seen as a constant. Karmarkar and Karp [12] designed an
AFPTAS (Asymptotic Fully Polynomial Time Approximation Scheme) for the
problem. They use a similar (but much more complex) algorithm, to achieve a
running time which also depends on 1

ε polynomially.
As stated above, the absolute approximation ratio of any algorithm can-

not be expected to be better than 3
2 . Several algorithms are known to achieve

this bound. Specifically, the simple First-Fit-Decreasing (FFD) algorithm, which
sorts the items according to non-increasing size, and applies First Fit (each item
is packed to the earliest bin where it fits), is one of these algorithms. This result
is implied by bounds on the performance of FFD, which are given e.g. by [20]
and also proved directly using a simple proof in [16]. Several other algorithms
with the same approximation ratio are known, (see e.g. [22]).

As for the online problem, the currently best known upper bound on the
asymptotic competitive ratio is 1.58889 due to Seiden [15]. This problem has
been extensively studied. The online bin packing problem was first investigated
by Ullman [17]. He showed that the First Fit algorithm has performance ratio
17
10 . This result was then published in [10]. Johnson [11] showed that the Next
Fit algorithm has performance ratio 2. Yao [19] designed an algorithm called
Revised First Fit and showed that it has performance ratio 5

3 .
Lee and Lee [13] developed the Refined Harmonic algorithm, which they

showed to have a performance ratio of 273
228 < 1.63597. The next improvements

were Modified Harmonic and Modified Harmonic 2. [14] showed that the
first algorithm has competitive ratio of at most 538

333 < 1.61562 and claimed that
the second algorithm has competitive ratio of at most 239091

148304 < 1.61217.
There is less study of the absolute competitive ratio, and the existent study

focuses on the performance of First Fit. An upper bound of 1.75 was proved by
Simchi-Levi [16]. A lower bound of 5

3 was given by Zhang [21].
An important version of online bin packing (which is not studied in [6]) is

the bounded space model. Bounded space algorithms can only have a constant

Bin Packing with Rejection Revisited 149

number of bins available to accept items at any point during processing. The
available bins are also called “open bins”. The bounded space assumption is
a quite natural one. Essentially the bounded space restriction guarantees that
output of packed bins is steady, and that the packer does not accumulate an
enormous backlog of bins which are only output at the end of processing. For
the classical bin packing problem, Lee and Lee [13] presented an algorithm called
Harmonic, which partitions items into m > 1 classes and uses bounded space
of at most m − 1 open bins. For any ε > 0, there is a number m such that the
Harmonic algorithm that uses m classes has a performance ratio of at most
(1 + ε)Π∞ [13], where Π∞ ≈ 1.69103 is the sum of series (see Section 3.2).
They also showed there is no bounded space algorithm with a performance ratio
below Π∞. The algorithms mentioned above Refined Harmonic, Modified
Harmonic and Modified Harmonic 2 are all unbounded space adaptations
of Harmonic. Note that the 1.75 upper bound of Dósa and He [6] does not
use bounded space, as it is based on First Fit. It is achieved by a sequence of
algorithms, whose sequence of competitive ratios tends to 1.75 from above.

There has been a fair amount of research on variants of well known problem,
where a notion of rejection is introduced. Such studies include research on vari-
ants of various important scheduling problems (see [1,9,7]). Since scheduling is
strongly related to bin packing, this gives another motivation to the study of the
bin packing problem with rejection.

Our results. We first study the offline problem. We design an APTAS for bin
packing with rejection problem which uses techniques from [5] but also from [8]
and [2]. For a given value of ε, the APTAS has cost of at most (1 + ε)OPT + 1.

Next, we design an algorithm with absolute approximation ratio 3
2 . To do

that, we use the APTAS using a constant value of ε, combined with adaptations
of the APTAS and and additional arguments for cases where the value OPT
is small. Note that here the costs do not always take integer values unlike in
standard bin packing. Our (1 + ε)-approximation (in the asymptotic case) and
3
2 -approximation (in the absolute case) improve the previous results of [6] for
the two measures which are 3

2 and 2 respectively.
We continue with a study of the online problem. To be able to prove upper

bounds for online algorithms, we generalize the notion of weighting [17,15] to
algorithms which allow rejection. We establish the best asymptotic competitive
ratio for bounded space algorithms, and show it is the same as for the problem
without rejection. For this, we adapt the Harmonic algorithm of Lee and Lee
[13] to be able to handle the notion of rejection. We show that the adapted
algorithms still have the same asymptotic competitive ratios, and thus, achieve
the best possible performance. Finally we show an improved unbounded space
algorithm which is a modification of Modified Harmonic which can handle re-
jections. Both our algorithms, the rejective variants of Harmonic and Modified
Harmonic achieve better asymptotic competitive ratios than the algorithm of
[6]. Their ratios are approximately 1.69103 and 1.61562, whereas the algorithm
of [6] has a competitive ratio 1.75 + ε.

Proofs that were omitted from this version can be found in the full version.

150 L. Epstein

2 Offline Bin Packing with Rejection

2.1 An APTAS

To design an APTAS, we use methods similar to the well known APTAS for the
classical bin packing problem, given by Fernandez de la Vega and Lueker [5].
The adaptation we design here has some similarities with [2], however there are
many differences due to the different natures of the problems. In order to be
able to deal with rejection costs, we also use methods similar to ones used for
scheduling, as in [8].

We assume that without loss of generality, each rejection cost ri satisfies
ri < 1. We can make this assumption since an item of rejection cost at least 1,
that is rejected in some solution, can be placed in a bin of its own instead, and
the solution cost does not increase. We also assume OPT ≥ 1. In order to be
able to assume this, note that if OPT < 1 this means that all jobs are rejected,
since any solution which uses at least one bin has cost of at least 1. Therefore,
we can compute the sum of all rejection costs. If this sum is smaller than 1 we
output this solution and otherwise, we run the APTAS. We can always check
the solution which rejects all jobs and output it if it turns out to be better than
the result of the APTAS. This will be useful to get a better approximation for
small values of OPT which is done later.

As in [5], a first partition is done into “large items” and “small items”. Let δ
be a function of ε defined later. We require of δ to be an inverse of an integer.
An item j is considered to be large if both rj ≥ δ and pj ≥ δ. All other items
are small. We denote the multiset of large items by L and the multiset of small
items by M . We have I = L ∪M .

The first step is to construct a set of possible packings of the large items. For
each such packing of large items only, we add the other items in a near optimal
way. The number of packings of large items would be polynomially bounded,
yet, packings are enumerated in a way that a packing, which is close enough for
our purposes to an optimal packing (restricted to large items only), is tested.

Let N be the number of large items in the input (N = |L|). If the number of
large items is relatively small, that is N < 1

δ4 , we simply enumerate all possible
solutions for these large items (these are partial packings of the large items where
the unpacked items are rejected) into at most N bins. Since a packing contains
at most N bins, and each item can be either placed into one of these bins or
rejected, there are at most (N + 1)N ≤ (1

δ4)
1

δ4 possible packings. Note that in
this process with opened bins but possibly some of them remained empty. The
set of bins remaining empty after this process are removed from the packing.
We would like to add empty bins later and to test all possible amounts of empty
bins, such bins are added to the packing to accommodate small items.

For the case where N ≥ 1
δ4 , we perform a rounding of the rejection costs of all

items in L. We define intervals [δ+iδ2, δ+(i+1)δ2) for i = 0, . . . ,Δ = 1
δ2 − 1

δ −1.
For every item j ∈ L, we define r′j to be the left endpoint of the interval to which
rj belongs (i.e., it is the value of rj , rounded down to the closest value δ + iδ2).
Let I ′ be the adapted input. Let A(I ′) be the cost of a solution of an algorithm

Bin Packing with Rejection Revisited 151

A for the rounded input, and let A′(I ′) be the cost of the same solution on the
original items. Then we can show the following.

Lemma 1. A′(I ′) ≤ (1 + δ)A(I ′) and OPT (I ′) ≤ OPT (I)

For 0 ≤ i ≤ Δ, let Ni be the number of items with rounded rejection cost δ+iδ2,

and let ai,1 ≥ . . . ≥ ai,Ni be (the sizes of) these items. Note that N =
Δ∑

i=0

Ni.

We can consider only the sizes of items for each i, since they all have the same
rejection cost δ + iδ2. Therefore, in this case we can identify between items and
their sizes. For a given 1 ≤ i ≤ Δ, denote the multi-set of item sizes by Bi.

We perform a linear grouping on each one of the multi-sets of large items
Bi = {ai,1, . . . , ai,Ni}. Let m = 1

δ2 . We partition the sorted set of large items
into m consecutive sequences Si,j (j = 1, . . . ,m) of ki = �Ni

m � = �Niδ
2� items

each (to make the last sequence be of the same cardinality, we define ai,t = 0
for t > Ni). I.e., Si,j = {ai,(j−1)ki+1, . . . , ai,(j−1)ki+ki

} for j = 1, 2, . . . ,m. For
j ≥ 2, we define a modified sequence Ŝi,j which is based on the sequence Sj as
follows. Ŝi,j is a multiset which contains exactly ki items of size ai,(j−1)ki+1, i.e.,
all items are rounded up to the size of the largest element of Si,j . The set Si,1 is
not rounded and therefore Ŝi,1 = Si,1. Let L′

i be the union of all multisets Ŝi,j

(L′
i =

m⋃
j=1

Ŝi,j) and L′ =
Δ⋃

i=0

L′
i and let L′′

i =
m⋃

j=2

Ŝi,j , L′′ =
Δ⋃

i=0

L′′
i .

We find solutions for the two sets L1 =
Δ⋃

i=0

Si,1 = L′ − L′′ and L′′ separately.

The items of L1 are packed each in a separate bin. The input L′′ is treated as
follows. This input contains at most T = (m− 1)(Δ + 1) < 1

δ4 different type of
items (where two items are of the same type if they are of the same size and
have the same rounded rejection cost).

We enumerate all possible packings of the L′′ items into i bins, where 0 ≤
i ≤ N . The input L′′ contains at most T distinct sizes of elements. We are
interested in computing all solutions of a bin packing instance with a constant
number of distinct large types. Let (b1, ρ1), . . . , (bT , ρT) be the set of types, where
δ ≤ bj ≤ 1 is the size of items of type (bj , ρj) and δ ≤ ρj ≤ 1 is its (rounded)
rejection cost. We represent a multiset of items by a vector J = (u1, . . . , uT),
where uj is the number of items of type (bj , ρj). Let N̂ = (n1, . . . , nT) denote
an input. A pattern is a vector of non-negative integers such that the multiset of

items represented by it can fit in a single bin, i.e. q is a pattern if
T∑

i=j

qjbj ≤ 1.

Let Q be the set of all patterns. A packing can be described by specifying for
every q ∈ Q, the number of bins yq that are packed using pattern q.

As noted above, we remove empty bins from the packing, therefore an empty
pattern (for which qi = 0 for 1 ≤ i ≤ T), may be considered to be a legal pattern,
but is useless. The difference between nj and the number of items of type (bj , ρj)
that are packed in the packing are rejected items.

We now argue that |Q| ≤ (T + 1)
1
δ . A bin can contain at most 1

δ items. To
show the bound, we can represent each bin by a list of length 1

δ . In this list we

152 L. Epstein

first provide an complete enumeration of all items of this bin, if any slots remain
empty, we fill them with “null”. There are T +1 options for each item in the list,
since an item can be absent as well as of any size among the T possible sizes.
This gives an upper bound of (T + 1)

1
δ on the number of patterns |Q|.

A vector y ∈ N0
Q specifies a valid packing of an input N̂ into � bins if and

only if the following constraints hold.

∑
q∈Q

yq = �, and for all 1 ≤ j ≤ T,
∑
q∈Q

qjyq ≤ nj (1)

Since for each 1 ≤ j ≤ T , there are nj−
∑

q∈Q

qjyq items of this type which remain

unpacked. The rejection cost of each of them is ρj and thus the cost of the entire

packing including rejection costs of rejected items is �+
T∑

j=1

ρj(nj −
∑

q∈Q

qjyq).

Since � ≤ N , we are only interested in vectors y where each component is in
the set {0, . . . ,N}. Thus, the number of possible vectors y is polynomial.

For every packing, constructed for large items, we do the following. Consider
all non-empty bins packed with large items. If the packing was created for the
original items (in the case where N is small), the packing is not changed.

Otherwise, keep the bins of L1 items unchanged. Note that a vector y defines
a packing of the L′′ items completely, these are linearly grouped items, and not
the input items. After the process of packing is completed, including the packing
of small items that are packed in the next step, we can replace the items of Ŝi,j

in the packing by items of Si,j . Clearly, the items of Si,j are never larger than
the items of Ŝi,j , and so the resulting packing is feasible.

Let � be the number of bins in the packing. Since the final packing cannot
contain more than n non-empty bins, we perform the following for all the fol-
lowing values of d, d = �, . . . , n. Thus, d will be the number of used bins in the
resulting packing. For each bin, which is already packed with some large items,
compute the empty space in it (that is 1 minus the sum of sizes of all items
assigned to it). Denote the empty spaces in bins z = 1, . . . , d by xz . We define
xz = 1 for � < z ≤ d. To assign the small items (all items of M), construct the
following integer program. Let n′ = n − N be the number of small items, and
{(c1, r1), . . . , (cn′ , rn′)} be pairs of sizes and rejection costs of these items. For
1 ≤ z ≤ d + 1 and 1 ≤ j ≤ n′, let Xj,z be an indicator variable. If z ≤ d, the
value of Xj,z is 1 if item j is assigned to bin z and 0 otherwise. If z = d + 1 the
value Xj,z is 1 if item j is rejected and 0 otherwise.

We apply the upper bounds on sum of sizes of items in the bins as follows. For

each 1 ≤ z ≤ d,
n′∑

j=1

cj ·Xj,z ≤ xz . We clearly have
d+1∑
z=1

Xj,z ≥ 1 for all 1 ≤ j ≤ n′,

since each item must be either assigned to at least one bin or rejected. If it is
assigned to more than one bin, one of its occurences can be removed without
violating the other constraints. If it is both assigned and rejected, it is again
removed from any bin it is assigned to.

Bin Packing with Rejection Revisited 153

The linear goal function is to minimize the expression
n′∑

j=1

rj ·Xj,d+1. This is

the sum of rejected items, and since the number of used bins is d, the cost of an
algorithm is d plus the sum of rejection costs.

We relax the integrality constraint, and replace it with Xj,z ≥ 0. We are left
with a linear program which clearly has a solution if the original integer program
does. Solving the linear program we can find a basic solution. This basic solution
has at most d+n′ non-zero variables (as the number of constraints). Clearly, each
item j has at least one non-zero variable Xj,z and thus we get that the number of
items that are not assigned completely to a bin or completely rejected (i.e., that
have more than one non-zero variable associated with them) is at most d. These
items are not assigned according to the solution found by the linear program.
Since these items are small, for each item, either the rejection cost is at most δ,
or the size it at most δ (or both). Therefore, out of the (at most) d items we still
need to assign, we reject all items with rejection cost of at most δ, and pack the
other items into bins, so that each bin packed in this way, (possibly except for
the last one) contains exactly 1

δ items. Out of the d small items that participate
in this process, let d1 be the number of rejected small items and d − d1 the
number of small items which are packed into bins.

Therefore, the additional cost for these items is at most δd1 + �δ(d− d1)� ≤
δd + 1. As an output, it is possible to choose the solution with smallest cost out
of all resulting solutions.

We next analyze the performance guarantee of the above algorithm. We make
use of the following definitions and lemma.

For two multisets A, B, whose elements are pairs of sizes and rejection costs
of items. We say that A is dominated by B and denote A ≤ B if there exists an
injection f : A → B with the following properties. Let a = (pa, ra) ∈ A, and let
f(a) = b = (pb, rb) ∈ B, then pb ≥ pa and rb ≥ ra.

Lemma 2. If A andB are multisets such that A ≤ B, thenOPT (A) ≤ OPT (B).

We would like to analyze the minimum cost of any solution we get. To upper
bound the cost of this minimal solution, we actually upper bound the cost of
one specific solution, defined later. In the full version of the paper, we prove the
following theorem.

Theorem 1. Algorithm FL is an APTAS.

As mentioned earlier, the bin packing problem with rejection, if analyzed by
the absolute approximation ratio, cannot have an approximation algorithm with
approximation ratio smaller than 3

2 (unless P = NP). In the full version of
the paper we design an algorithm with this (probably best possible) absolute
approximation ratio, and prove the following.

Theorem 2. There exists a polynomial offline approximation algorithm, whose
absolute approximation ratio is 3

2 .

154 L. Epstein

3 Online Bin Packing with Rejection

3.1 Analysis of Online Bin Packing Algorithms with Rejection

In this section we develop a scheme which is useful for analyzing bin packing
algorithms with rejection. It is possible to apply the method both to offline and
online algorithms, however, in this paper we only use it for online algorithms.
The method is based on weighting, and is similar to the method used already
by Ullman [17] (see also [13,15]). We describe the basic method briefly as our
method generalizes it.

The essence of this method is to assign weights to items. The weights must
be assigned so that the cost of the algorithm, i.e. the number of used bins is
roughly the sum of weights. A small deviation is allowed when dealing with the
asymptotic competitive ratio, thus an additive constant does not degrade the
performance of an algorithm. As the next step, the problem of upper bounding
the asymptotic competitive ratio is reduced into that of finding the maximum
sum of weights of items which can fit into a single bin. In some cases, a constant
number k of distinct weighting functions are defined to handle several major
behaviors of the algorithm (resulting from specific inputs). For each outcome of
the algorithm, at least one of the k weighting functions needs to have the above
property regarding the cost of the algorithm. In this case, an upper bound on
the competitive ratio is the maximum between the k maximum sums of weights
in a single bin for the k weight functions. The method in [15] is more complex
and generalizes the above method.

Surprisingly, the method can be generalized to deal with weights which are not
related only to the cost of packing items (i.e., numbers of bins) but to rejection
costs as well.

Let A be an online algorithm and let C be a desired competitive ratio. Let
w1, . . . , wk be a set of functions wi : (0, 1] → R+

0 (where R+
0 denotes the set of

non-negative real numbers). For an item j, we denote its weight with respect to
weight function wi by wi

j .

Theorem 3. A value C is an upper bound on the asymptotic competitive ratio
of algorithm A if the following conditions hold.
1. For every item j, and for every weight function wi, we have that wi

j ≤ Crj,
that is, for every weight function, the weight assigned to each item is no larger
than C times its rejection cost. 2. There exists a constant μ, such that for every

input, there exists a value 1 ≤ i ≤ k such that A ≤
n∑

j=1

wi
j + μ. 3. For every set

of items J such that
∑
j∈J

pj ≤ 1, and every 1 ≤ i ≤ k, we have
∑
j∈J

wi
j ≤ C.

3.2 Algorithm Rejective Harmonic

We now define our adaptation of the Harmonick algorithm of Lee and Lee [13].
The algorithm is called Rejective Harmonick (RejHk). The fundamental idea
of “harmonic-based” algorithms is to first classify items by size, and then pack an

Bin Packing with Rejection Revisited 155

item according to its class (as opposed to letting the exact size influence packing
decisions). We use a similar classification, but after classification is applied, we
further use a decision rule (based on a threshold) to identify whether the item
should be packed or rejected.

For the classification of items, we partition the interval (0, 1] into sub-intervals.
We use k − 1 sub-intervals of the form (1

i+1 ,
1
i] for i = 1, . . . , k − 1 (intervals

1, . . . , k − 1) and one final sub-interval (0, 1
k] (interval k). Each packed bin will

contain only items from one sub-interval. Items in sub-interval i that are not
rejected, are packed i to a bin for i = 1, . . . , k − 1 (except for possibly the very
last bin dedicated to this interval). The items in interval k that are not rejected
are packed using the greedy algorithm Next Fit. This algorithm keeps a single
open bin and packs items of interval k that are not rejected to this bin until some
item does not fit. Then a new bin is opened for interval k, and the previous bin
is never used again. For 1 ≤ i ≤ k − 1, a bin which received the full amount of
items (according to its type) is closed, therefore a total of at most k− 1 bins are
open or active simultaneously (one per interval, except for (1

2 , 1] which does not
need an active bin).

We next define the thresholds for acceptance or rejection of a new item. Given
an item a ∈ I, let 1

sa
be the right endpoint of the sub-interval 1 ≤ sa ≤ k to

which pa belongs. If sa < k, item a is rejected if ra ≤ 1
sa

, and otherwise a
is accepted and packed according to the algorithm above. If sa = k, item a is
rejected if ra ≤ k

k−1pa, and otherwise a is accepted.
As a first step of analyzing the algorithm, we assign weights to items. We

will use the method introduced in the previous section for the analysis. The
assignment is similar to the proof of [13], however, unlike the proof in [13], our
weights are a function of both the sizes and rejection costs. We use a single
weight function w, and the weight of item a ∈ I is denoted wa.

In order to use the method, we need to assign the weights so that the three
conditions in Theorem 3 hold. We do the assignment so that the cost of the
algorithm satisfies RejHk ≤

∑
a∈I

wa + k − 1.

An item a which is rejected by the algorithm gets weight ra. An item a which
is accepted gets weight 1

sa
, if sa < k and k

k−1pa, if sa = k. Thus each item of
sub-intervals 1, . . . , k − 1 gets weight min{ra, 1

sa
} and each item of sub-interval

k gets weight min{ra, k
k−1pa}.

For the analysis, we use the following well known sequence πi, i ≥ 1, which
often occurs in bin packing. Let π1 = 2, πi+1 = πi(πi − 1) + 1 and let Π∞ =
∞∑

i=1

1
πi−1 ≈ 1.69103. This sequence is presented in [13]. It is not difficult to show

that 1−
t∑

i=1

1
πi

= 1
πi+1−1 . It is shown in [13] that the sequence of asymptotic com-

petitive ratios of the algorithms Harmonick tends to Π∞ as k grows, and that
no bounded space algorithm can have an asymptotic competitive ratio smaller
than Π∞. We can show that the generalization RejHk has the same properties.

156 L. Epstein

Clearly, the lower bound for the problem with rejection follows from the lower
bound on the special case without rejection.

Theorem 4. The asymptotic competitive ratio of RejHk tends to Π∞ as k
grows. No algorithm can have a smaller asymptotic competitive ratio.

Consider an optimal offline algorithm OPT. For this algorithm, denote by ROPT
the set of rejected items and by AOPT the set of accepted items. Let BOPT
denote the number of used bins.

Then OPT = BOPT +
∑

a∈ROPT

ra ≥ BOPT +
∑

a∈ROPT

wa. Therefore, in order

to prove an asymptotic competitive ratio C, it is enough to prove
∑

a∈AOPT

wa ≤

C ·BOPT. To prove this, it is enough to consider every bin of OPT separately, and
to show that the sum of weights of items in this bin is at most C. Finally, to show
this, we upper bound the sum of weights of items that can fit in a single bin.

To summarize the technique used here, we assign weights to items, so that the
cost of an algorithm is roughly the sum of weights. Then we reduce the problem
into that of finding the maximum sum of weights of items in a single bin. This
method is often used in bin packing problems, and was already used in [17].
Surprisingly, the method here is applied even though the weights are not related
only to packing items but to rejection costs as well.

3.3 Algorithm Rejective Modified Harmonic

In this section we show how to design improved algorithms which are unbounded
space. As an example, we adapt one of the best algorithms known for online bin
packing to allow rejection. This algorithm Modified Harmonic was introduced
by Ramanan et al. [14]. We give a short description of this algorithm.

As Harmonic, Modified Harmonic also classifies items by size, and packs
items according to classes. A disadvantage of Harmonic is in the packing of
items of the sub-interval I1 = (1

2 , 1]. These items are packed one per bin, possibly
wasting a lot of space in each single bin. To avoid this large waste of space,
Modified Harmonic and other later algorithms (see [15]) use two extra interval
endpoints, of the form 1

2 < Δ < 1 and 1 − Δ. Then, some small items can be
combined in one bin together with an item of size in (1

2 ,Δ]. Items larger than
Δ (i.e., in the interval I1

1) are still packed one per bin as in Harmonic. These
algorithms furthermore use parameters αi (i = 2, . . . , n− 1) which represent the
fraction of items of intervals Ii = (1

i+1 ,
1
i] which are supposed to be combined

with an item of size in I2
1 = (1

2 ,Δ]. For i = 2 α2 is the fraction of items in
the interval I2

2 = (1
3 , 1 −Δ]. This fraction of items, when they arrive, is either

immediately combined with such a large item (if this large item was not combined
with items of different intervals yet), or else space is reserved for the larger item.
Once such a large item arrives, it is inserted into a space reserved for it. The
remaining bins with items of interval Ii (or I2

2 , for i = 2) still contain i items
per bin. Moreover, items of the interval I1

2 = (1 −Δ, 1
2] are not combined with

larger items and are packed in pairs. The items of the last interval In = (0, 1
n]

are not combined with larger items and are packed using Next Fit.

Bin Packing with Rejection Revisited 157

Modified Harmonic (MH) is defined using four intervals of items in (1
3 , 1]

as above, 35 intervals Ii for i = 3, ..., 37 and one last interval I38 = (0, 1
38]. It

uses Δ = 419
684 .

α2 =
1
9
; α3 =

1
12

; α4 = α5 = 0; αi =
37− i

37(i+ 1)
, for 6 ≤ i ≤ 36 and α37 = 0.

The results of [14] imply that the asymptotic performance ratio of Modified
Harmonic is at most 538

333 < 1.61562. (In the original definition, Δ was used to
denote 1−Δ.) Note that for every interval Ii (or I2

2 , for i = 2) for which smaller
items that are possible to be combined with a larger item in a bin, we compute
the maximum amountmi of such items that can fit into the bin, leaving an empty
space of size at least Δ. In this calculation, a maximum size of item is taken into
account. Thus we get m2 = m3 = 1, m6 = m7 = 2, m8 = m9 = m10 = 3,
m11 = m12 = 4, m13 = m14 = m15 = 5, m16 = m17 = m18 = 6, m19 = m20 = 7,
m21 = m22 = m23 = 8, m24 = m25 = 9, m26 = m27 = m28 = 10, m29 = m30 =
11, m31 = m32 = m33 = 12, m34 = m35 = m36 = 13.

In the analysis we ignore incomplete bins which did not receive the full amount
of items they are supposed to get. These are bins with items of size in (0, 1

2],
that were not supposed to be combined with larger items, and bins with items
of these sizes that are supposed to be combined with a larger item, but did not
get mi items. The number of such incomplete bins is bounded by a constant
since we do not open a new bin until the previous one receives the full amount
of items. However, a bin which received an item of size in I2

1 but did not receive
smaller items, or a bin which has space reserved for am item of size in I2

1 , that
never arrived, cannot be ignored since their amount can be arbitrary. We note
however, that after removing incomplete bins, there cannot be both types of bins
mentioned above, and we either need to deal with “waiting” bins with an items
of size in I2

1 , or “waiting” bins with space reserved for such an item.
We define a version of Modified Harmonic which allows rejection, and call

it Rejective Modified Harmonic (MHR). This algorithm has a decision rule
for every interval. Upon arrival of an item, it is either rejected, or assigned by
MH. Rejected items are simply ignored by this sub-routine that runs MH.

We therefore only need to define a rejection rule for every interval. Let x be
an item, we consider all possible cases. If x ∈ I1

1 = (Δ, 1], x is rejected if rj ≤ 1
and otherwise accepted. If x ∈ I2

1 = (1
2 ,Δ], x is rejected if rj ≤ 2

3 and otherwise
accepted. If x ∈ I1

2 = (1−Δ, 1
2], x is rejected if rj ≤ 1

2 and otherwise accepted. If
x ∈ I2

1 = (1
3 ,Δ], x is rejected if rj ≤ 4

9 and otherwise accepted. If x ∈ I3 = (1
4 ,

1
3],

x is rejected if rj ≤ 11
36 and otherwise accepted. If x ∈ Ii = (1

i+1 ,
1
i], for the

following values of i; i = 4, 5, 37, x is rejected if rj ≤ 1
i and otherwise accepted.

If x ∈ Ii = (1
i+1 ,

1
i] for 6 ≤ i ≤ 36, x is rejected if rj ≤ 38

37(i+1) and otherwise

accepted. If x ∈ I38 = (0, 1
38], x is rejected if rj ≤ 38·pj

37 and otherwise accepted.
We assign two sets of weights w1 and w2 to items as follows. The proof is

similar to the proof in [14], with differences resulting from rejections. A rejected
item has w1

j = w2
j = rj . An accepted item j of an interval Ii for i = 4, 5, 37 is

assigned weight w1
j = w2

j = 1
i . An item of interval I1

1 gets weight w1
j = w2

j = 1.

158 L. Epstein

An item of interval I2
1 gets weight w1

j = 1, w2
j = 2

3 . An item of interval I1
2 gets

weight w1
j = w2

j = 1
2 . An item of interval I2

2 gets weight w1
j = 4

9 , w2
j = 5

9 . An
item of interval I3 gets weight w1

j = 11
36 , w2

j = 7
18 . An item of interval Ii for

6 ≤ i ≤ 36 gets weight w1
j = 38

37(i+1) , w
2
j = w1

j + 37−i
37mi(i+1) . An item of interval

I38 gets weight w2
j = w1

j = 38·pj

37 .
Weights are defined as in [14] except for rejected items and items in the

interval I2
1 for which we defined w2

j = 2
3 . Weights and rejection rules are de-

fined so that for a rejected item j, its weight is never larger than the weight
min{w1

j , w
2
j} that it would have received if it had a larger rejection cost and were

accepted.
In order to analyze the competitive ratio and show it is at most C1 = 538

333 <
1.61562 (as for the original algorithm), we show that all conditions of Theorem
3 hold. The second condition holds due to the following. The proof of [14] shows
that the condition holds in the case where no items are rejected, and for an item
j in the interval I2

1 , the second weight function is defined by w2
j = 0. Since the

weight of rejected items is exactly their rejection cost, and the weights we define
are never smaller than the weights in [14], the condition follows.

To prove the first condition, note that for each item j, either its weight is
equal to its rejection cost, or its rejection cost is at least its weight w1

j . Thus we
need to show for every item that w2

j ≤ C1w1
j . We only need to consider cases in

which the two weights are not the same. For an item j in the interval I2
1 we have

w2
j

w1
j

= 1.5. For an item j in the interval I2
2 we have w2

j

w1
j

= 1.25. For an item j in

the interval I3 we have w2
j

w1
j

= 14
11 . For an item j in interval Ii for 6 ≤ i ≤ 36 we

have w2
j

w1
j

= 1+ 37−i
38mi

. This value is maximized for i = 6, since mi is monotonically

increasing. For i = 6 we have mi = 2 and thus w2
j

w1
j
≤ 1 + 31

76 <
3
2 .

To prove the last condition of Theorem 3, we note again that weights of
rejected items are never larger than their weights according to each weight func-
tion, and thus we need to consider the weight functions as they are defined. Items
for which the weights are defined as in [14], the proof follows from the result in
that paper. Thus we need to consider only w2 and only sets of items that can
fit in a bin and which contain an item of size in I2

1 . Denote this large item by x.
Such a bin can contain in addition only items smaller than 1

2 . In order to give an
upper bound on the total weight of items in the bin, we find an upper bound on
the ratio w2

j

pj
for items no larger than 1

2 . We can see that this ratio is no larger
than 5

3 for items in (1
6 ,

1
2], no larger than 38

37 for items in (0, 1
37], and no larger

than 38
37 + 37−i

37mi
. This ratio is smaller than 3

2 . Thus an upper bound on the total
weight in the bin with respect to w2 is 2

3 + 1
2 ·

5
3 = 3

2 .
Since all conditions hold for C1 = 538

333 we establish the following theorem.

Theorem 5. The competitive ratio of MHR is at most C1 = 538
333 .

Bin Packing with Rejection Revisited 159

References

1. Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie. Mul-
tiprocessor scheduling with rejection. SIAM Journal on Discrete Mathematics,
13(1):64–78, 2000.

2. A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered
vector packing problems. Naval Research Logistics, 92:58–69, 2003.

3. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for
bin packing: A survey. In D. Hochbaum, editor, Approximation algorithms. PWS
Publishing Company, 1997.

4. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, Online Algorithms: The State of the Art, pages
147–177, 1998.

5. W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ ε
in linear time. Combinatorica, 1:349–355, 1981.

6. G. Dósa and Y. He. Bin packing problems with rejection penalties and their dual
problems. Information and Computation, 204(5):795–815, 2006.

7. D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. N. Uma,
and J. Wein. Techniques for scheduling with rejection. Journal of Algorithms,
49(1):175–191, 2003.

8. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. Journal of the ACM,
34(1):144–162, 1987.

9. H. Hoogeveen, M. Skutella, and G. J. Woeginger. Preemptive scheduling with rejec-
tion. In Proc. of the 8th Annual European Symposium on Algorithms (ESA2000),
pages 268–277, 2000.

10. D. S. Johnson, A. Demers, J. D. Ullman, Michael R. Garey, and Ronald L. Graham.
Worst-case performance bounds for simple one-dimensional packing algorithms.
SIAM Journal on Computing, 3:256–278, 1974.

11. David S. Johnson. Fast algorithms for bin packing. Journal of Computer and
System Sciences, 8:272–314, 1974.

12. N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science (FOCS’82, pages 312–320, 1982.

13. C. C. Lee and D. T. Lee. A simple online bin packing algorithm. J. ACM,
32(3):562–572, 1985.

14. P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear
time. Journal of Algorithms, 10:305–326, 1989.

15. S. S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671, 2002.
16. D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res.

Logist., 41(4):579–585, 1994.
17. J. D. Ullman. The performance of a memory allocation algorithm. Technical

Report 100, Princeton University, Princeton, NJ, 1971.
18. A. van Vliet. An improved lower bound for online bin packing algorithms. Infor-

mation Processing Letters, 43(5):277–284, 1992.
19. A. C. C. Yao. New algorithms for bin packing. J. ACM, 27:207–227, 1980.
20. M. Yue. A simple proof of the inequality FFD(L) ≤ (11/9)OPT (L) + 1, ∀ L, for

the FFD bin-packing algorithm. Acta. Math. Appl. Sinica, 7:321–331, 1991.
21. G. Zhang. Private communication.
22. G. Zhang, X. Cai, and C.K. Wong. Linear time approximation algorithms for bin

packing. Operations Research Letters, 26:217–222, 2000.

On Bin Packing with Conflicts

Leah Epstein1 and Asaf Levin2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel
lea@math.haifa.ac.il

2 Department of Statistics, The Hebrew University, Jerusalem, Israel
levinas@mscc.huji.ac.il

Abstract. We consider the offline and online versions of a bin pack-
ing problem called bin packing with conflicts. Given a set of items
V = {1, 2, . . . , n} with sizes s1, s2 . . . , sn ∈ [0, 1] and a conflict graph
G = (V, E), the goal is to find a partition of the items into independent
sets of G, where the total size of each independent set is at most one, so
that the number of independent sets in the partition is minimized. This
problem is clearly a generalization of both the classical (one-dimensional)
bin packing problem where E = ∅ and of the graph coloring problem
where si = 0 for all i = 1, 2, . . . , n. Since coloring problems on gen-
eral graphs are hard to approximate, following previous work, we study
the problem on specific graph classes. For the offline version we design
improved approximation algorithms for perfect graphs and other spe-
cial classes of graphs, these are a 5

2
= 2.5-approximation algorithm for

perfect graphs, a 7
3
≈ 2.33333-approximation for a sub-class of perfect

graphs, which contains interval graphs, and a 7
4

= 1.75-approximation
for bipartite graphs. For the online problem on interval graphs, we design
a 4.7-competitive algorithm and show a lower bound of 155

36
≈ 4.30556 on

the competitive ratio of any algorithm. To derive the last lower bound,
we introduce the first lower bound on the asymptotic competitive ratio
of any online bin packing algorithm with known optimal value, which is
47
36

≈ 1.30556.

1 Introduction

We consider the following bin packing with conflicts problem (BPC) (see
[15,3] and also the information on the bin packing problem given in [4]). Given
a set of items V = {1, 2, . . . , n} with sizes s1, s2 . . . , sn ∈ [0, 1] and a conflict
graph G = (V,E), the goal is to find a partition of the items into independent
sets of G where the total size of each independent set is at most one, so that
the number of independent sets in the partition is minimized. This problem
is clearly a generalization of both the classical (one-dimensional) bin packing
problem where E = ∅ and of the graph coloring problem where si = 0 for all
i = 1, 2, . . . , n. In an online environment, items arrive one by one to be packed
immediately and irrevocably. A new item is introduced by its size, together
with all its edges in the current conflict graph (i.e., edges which connect it to
previously introduced items).

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 160–173, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Bin Packing with Conflicts 161

This problem arises in assigning processes or tasks to processors. In this case
we are given a set of tasks, where some pairs of tasks are not allowed to execute
on the same processor due to efficiency or fault tolerance reasons. The goal is to
assign a minimum number of processors to this set of processes given that the
makespan is bounded by some constant (see Jansen [14]). Other applications of
this problem arise in the area of database replicas storage, school course time
tables construction, scheduling communication systems (see de Werra [5]), and
finally in load balancing, the parallel solution of partial differential equations
by two dimensional domain decomposition (see Irani and Leung [13]). We follow
earlier work and consider the BPC on sub-classes of perfect graphs. This restric-
tion is motivated by the theoretical hardness of approximating graph coloring
on general graphs.

In order to analyze our approximation and online algorithms we use common
criteria which are the approximation ratio (also called performance guarantee)
and competitive analysis. For an algorithm A, we denote its cost by A as well.
An optimal offline algorithm that knows the complete sequence of items is de-
noted by OPT. We consider the (absolute) approximation (competitive) ratio
that is defined as follows. The (absolute) approximation (competitive) ratio of A
is the infimum R such that for any input, A ≤ R·OPT. If the absolute approx-
imation (competitive) ratio of an offline (online) algorithm is at most ρ we say
that it is a ρ-approximation (ρ-competitive). For the offline problem, we restrict
ourselves to algorithms that run in polynomial time. Our online algorithm is
also a polynomial time algorithm (though this property is not always required
in the competitive analysis literature). We focus on the absolute criteria and not
on the criteria of asymptotic approximation ratio and asymptotic competitive
ratio (these criteria are commonly used for bin packing problems) since a conflict
graph can allow us to magnify small bad instances into large ones (with large
enough values of OPT) with the same absolute ratio. So in general, we do not
expect to have a better asymptotic approximation ratio than the corresponding
absolute approximation ratio, even though this may be possible.

Since the BPC problem generalizes the classical coloring problem that is
known to be extremely hard to approximate, we follow earlier studies and con-
sider the BPC problem on the class of perfect graphs for which the coloring
problem is polynomially solvable (see [25]). The best previously known approx-
imation algorithm for BPC on perfect graphs is the algorithm of Jansen and
Öhring [15] with an approximation ratio of 2.7. In Section 3.1 we improve this
result and present our 2.5-approximation algorithm for BPC on perfect graphs.

Following Jansen and Öhring [15] we consider the class of graphs for which
one can solve in polynomial time the precoloring extension problem de-
fined as follows. Given an undirected graph G = (V,E) and k distinct ver-
tices v1, v2, . . . , vk, the problem is to find a minimum coloring f of G such that
f(vi) = i for i = 1, 2, . . . , k. This problem is reviewed in [12,21], and it is known to
be polynomially solvable for the following graph classes: interval graphs, forests,
split graphs, complements of bipartite graphs, cographs, partial K-trees and

162 L. Epstein and A. Levin

complements of Meyniel graphs1 (see [12] for a review of these results) and it is
also polynomially solvable for chordal graphs as shown by Marx [22]. However, it
is known to be NP-complete for bipartite graphs [12]. We denote by C the class
of graphs G for which one can solve in polynomial time the precoloring exten-
sion problem for any induced subgraph of G (including G itself). I.e., C is closed
under the operation of induced subgraph extraction. Jansen and Öhring [15]
analyzed the following algorithm with precoloring for the case where G belongs
to C. Denote the set of large items by L = {j : sj >

1
2}, and denote by χI(G)

the minimum number of colors used by an optimal solution for the precoloring
extension problem defined by G. Finally, we define the set of precolored vertices
to be L. Compute a feasible coloring of G using χI(G) colors, where for each
pair of items in L they are assigned different colors. For each color class, apply
a bin-packing heuristic such as the First-Fit-Decreasing algorithm. They proved
that the resulting algorithm is a 5

2 -approximation algorithm. In Section 3.2 we
improve this result by presenting a 7

3 -approximation algorithm.
For all ε > 0 Jansen and Öhring [15] also presented a (2 + ε)-approximation

algorithm for BPC on cographs and partial K-trees. Furthermore, they pre-
sented a 2-approximation algorithm for bipartite graphs. A d-inductive graph
has the property that the vertices can be assigned distinct numbers 1, . . . , n
such that each vertex is adjacent to at most d lower numbered vertices. Jansen
[14] showed an asymptotic fully polynomial time approximation scheme for BPC
on d-inductive graphs where d is a constant. This result includes the cases of
trees, grid graphs, planar graphs and graphs with constant treewidth. Oh and
Son [24] and McCloskey and Shankar [23] considered BPC on graphs that are
union of cliques, but their results are inferior to the 2.7-approximation algorithm
of Jansen and Öhring [15].

The hardness of approximation of BPC follows from the hardness of standard
offline bin packing (with respect to the absolute approximation ratio). It is not
hard to see that unless P = NP, no algorithm can have absolute approximation
ratio of less than 3

2 (due to a simple reduction from the partition problem, see
problem SP12 in [8]). Since standard bin packing is a special case of BPC, where
the conflict graph is an independent set, we get that for all graph classes studied
in this paper, BPC is APX-hard, and unless P = NP, cannot be approximated
within a factor smaller than 3

2 . Note that for bin packing, already the simple
First-Fit-Decreasing algorithm is a 3

2 -approximation [27].

Our results. In Section 2 we describe the methods applied in this paper. We
use weights for our analysis. The weights used throughout the paper have the
unique and novel property that weights are assigned not only as a function of
size of items, but also as a function of the location of items in an optimal solution
or in an approximate solution. We think that this new technical approach can
contribute to the analysis of algorithms for other problems as well.

We use these methods in Section 2 to give improved and tight bounds on
two algorithms designed in [15]. We show that their algorithm for perfect graphs

1 A graph is Meyniel if every cycle of odd length at least five has at least two chords.

On Bin Packing with Conflicts 163

has performance guarantee of approximately 2.691 and their algorithm with pre-
coloring has performance guarantee of approximately 2.423. These tight results
follow from our analysis together with bad examples for these algorithms given
in [15]. Note that these bounds and their proofs resemble the analysis of the
Harmonic algorithm [19] (the bounds are one unit higher than the upper bounds
for Harmonic). However, neither the algorithms of [15] nor our algorithms use
a partition into classes as is done in the Harmonic algorithm. Moreover, such a
partition in our case would result in an arbitrarily high approximation ratios.

In Section 3 we present our improved new algorithms for the offline case
of BPC. In Section 3.1 we design an improved algorithm for perfect graphs
with performance guarantee of 2.5. Our algorithm is also a 2.5-approximation
algorithm for BPC on all graph classes where one can solve the regular coloring
problem (i.e., coloring the vertex set of a graph using a minimum number of
colors) in polynomial time. In Section 3.2 we design an improved algorithm
with precoloring with performance guarantee of 7

3 . In Section 3.3 we design a
7
4 -approximation algorithm for bipartite graphs.

In Section 4 we discuss online algorithms for BPC on interval graphs. We de-
sign a simple 4.7-competitive algorithm and show a lower bound of 155

36 ≈ 4.30556
on the competitive ratio of any online algorithm. We derive the last lower bound
by introducing the first non-trivial lower bound for online bin packing with
known optimal value, which is 47

36 ≈ 1.30556. We also show an O(log n) compet-
itive algorithm for bipartite graphs, which is best possible. Both algorithms are
adaptations of online algorithms for the standard coloring problem, see [18,20].

Proofs that were omitted from this version due to lack of space can be found
in the full version of the paper.

2 Weighting Functions and the Performance of FFD
Based Algorithms

In this section, we define weighting functions which are a major tool in the
analysis of algorithms for bin packing. The weights defined in this section are
later adapted and used for the analysis of our improved algorithms.

The idea of such weights is simple. An item receives a weight according to its
size and its packing in some fixed solution. The weights are assigned in a way
that the cost of an algorithm is close to the total sum of weights. In order to
complete the analysis, it is usually necessary to consider the total weight that
can be packed into a single bin of an optimal solution.

In this paper, we exploit this method in order to achieve improved algorithms
for BPC. Though this method was not applied to BPC before, it was widely
used for standard bin packing, and many variants on bin packing. This technique
was used already in 1971 by Ullman [28] (see also [17,19,26]).

In this section, we define a set of weights which depends solely on the size of
items. For an item x such that sx >

1
2 we define weight(x) = 1. We define the

interval I1 by I1 = (1
2 , 1]. For an item x such that sx ≤ 1

2 , let j be an integer
such that sx ∈ Ij = (1

j+1 ,
1
j]. We define weight(x) = sx + 1

j(j+1) . Note that

164 L. Epstein and A. Levin

even though this classification to intervals was used before, the weight function
is non-standard. Typically either all items in an interval receive the same weight
or are scaled by a common multiplicative factor (see e.g. [19,2]). We note that the
weight function does not round up the size of an item to the next unit fraction.

We need to use this special weight function in order to make sure that the
amount of weight is large enough, even if the input is partitioned into several
classes, each of which is packed separately. On the other hand, we must make
sure that the weights are not too large, so that the bound on the performance
guarantee is not increased artificially. A similar (though different) weight func-
tion was used before by Galambos and Woeginger [6]. Their weight function can
be used to prove Corollary 2 and Theorem 1 but not the other results of this
paper. Therefore, we need to modify the weight function of [6] for our needs.

Given this set of weights, we note that for an item x of size sx ∈ Ij (j ≥ 2), the
ratio between its weight and its size is bounded as follows, j+2

j+1 ≤
weight(x)

sx
< j+1

j .
For a set of items X , we denote the sum of weights of all items in X by

W (X). I.e. W (X) =
∑

x∈X weight(x). We next show that any algorithm which
first partitions the input into μ classes, and then applies the algorithm First-Fit-
Decreasing on each class separately, satisfies the following condition on its cost
as a function of the total weight and μ.

Lemma 1. Consider an algorithm A and a subset of items J which forms an
independent set and is packed using First-Fit-Decreasing (FFD). Let Y be the
number of bins used for this packing. Then we have Y ≤ W (J) + 1.

Proof. Note that for the above weight function, any bin which contains an item
of size in (1

2 , 1] has total weight of items at least 1. Note also that the weight of
an item in Ij = (1

j+1 ,
1
j] is at least 1

j+1 + 1
j(j+1) = 1

j . Therefore, any bin which
contains j items of size in the interval (1

j+1 ,
1
j] has total weight of at least 1.

We can remove such bins from the packing and focus on all other bins called
transition bins (if no bins are left after the removal, we are done).

A transition bin contains only items whose size is at most 1
2 . Note that the

last bin ever opened may result in a transition bin, and it contains at least one
item. Moreover, let a transition bin be of type j (for some j ≥ 2), if the first
item ever packed into it has size in Ij . Next, we argue that there can be at
most one transition bin of each type. Since the items are packed using FFD,
transition bins are created in a sorted order, starting with the smallest type. If
there are two bins of the same type j, this means that during the time between
the packing the first items in these two bins, all packed items were also of size
in interval Ij . Therefore, the first bin must be assigned j such items before
the second transition bin of this type is opened, and thus the first bin is not
a transition bin. Let k be the largest type of any transition bin ever opened
(i.e., the transition bin with the smallest item). Remove from the packing all
items of size at most 1

k+1 . This removal may only decrease the total weight. As
stated above, the weight of all remaining items in the transition bins is at least
a multiplicative factor of k+2

k+1 their size.

On Bin Packing with Conflicts 165

Let α be the size of the first item in the last transition bin. Since the last
transition bin is opened, all other bins have a total size of items which is more
than 1 − α. Let i1 < . . . < it < k be the sorted list of types of transition bins.
We consider two cases which are t ≤ �k+2

2 �, and t > �k+2
2 �. In both cases we

need to show that the total weight in all transition bins is at least t (since there
are t+ 1 transition bins).

In the first case, if t = 0 we are done. Assume therefore t ≥ 1. We get a total
weight of at least t(1 − α)k+2

k+1 + α + 1
k(k+1) = tk+2

k+1 + 1
k(k+1) − α(tk+2

k+1 − 1) ≥

tk+2
k+1 + 1

k(k+1) −
t k+2

k+1−1

k = tk+2
k+1

k−1
k + k+2

k(k+1) . The inequality holds since the
coefficient multiplied by α is negative and α ≤ 1

k . We need to show that the
weight is at least t, i.e. that t(k2+k−2

k2+k − 1) + k+2
k(k+1) = −2t

k2+k + k+2
k2+k ≥ 0. We get

that this holds for t ≤ k+2
2 .

Consider the second case. The proof of the first case shows that it is enough
to consider the first f = t − �k+2

2 � transition bins, and to show that the total
weight of items in these bins is at least f . These bins are bins of types i1, . . . , if .
Consider the bin of type if+1. Note that if+1 ≤ k−�k+2

2 � since no two transition
bins are of the same type, and if+1 ≥ 3, since if ≥ 2. Let β be the size of the
first item in the bin of type if+1. Let m = if+1. Considering only items of sizes
in (1

m ,
1
2], we have that each bin out of the first f transition bins has total size

of such items of at least 1− β. However, they also have a total size of items in
(1

k+1 ,
1
2] of at least 1 − α. Therefore the weight of items in each such bin is at

least (1−β)m+2
m+1 +(β−α)k+2

k+1 = m+2
m+1 +β(1

k+1−
1

m+1)−αk+2
k+1 . We will show that

this amount is never smaller than 1. This expression is minimized for maximum
values of α,β and thus we need to show, (1− 1

m) · m+2
m+1 + (1

m −
1
k) · k+2

k+1 − 1 ≥ 0,
which is equivalent to k−m

km · k+2
k+1 ≥

2
m(m+1) . Note that k −m ≥ k+1

2 , m+ 1 ≥ 4

and thus k−m
km

k+2
k+1 ·

m(m+1)
2 ≥ k+2

k > 1. This completes the proof. ��

In the sequel, we consider algorithms for an input I of the following structure.
The set I is partitioned into ν independent sets. Out of these sets μ ≤ ν are
packed using FFD. Each other independent set J is packed into a single bin and
is assigned a total weight of at least 1.

Corollary 1. An algorithm B as above satisfies B ≤ W (I) + μ.

We now give a tight analysis of the FFD based algorithm given in [15] for
perfect graphs. That algorithm finds a coloring of all items with a minimum
number of colors, and then uses FFD to pack each color class. It was shown
in [15] that the performance guarantee of this algorithm is at most 2.7 and at
least 1 +Π∞ ≈ 2.69103. The value Π∞ is the sum of a series and is computed
using the well known sequence πi, i ≥ 1, which often occurs in bin packing. Let

π1 = 2, πi+1 = πi(πi − 1) + 1. Then Π∞ =
∞∑

i=1

1
πi−1 . This sequence is presented

e.g. in [2,19].
We are now ready to prove a matching upper bound of 1+Π∞ = 2.691 for this

algorithm. In order to do so, we need to find an upper bound on the total weight

166 L. Epstein and A. Levin

which can reside in one bin. The proof is similar to those of [2,19], however our
weights are defined differently since these proofs do not hold in our case. We
assume that the weight of an item sx of size in I1 is x + 1

2 , which may only
increase the total weight, since we assigned weight 1 to these items.

Lemma 2. Consider a set of items J packed into one bin in OPT. Then W (J) ≤
Π∞ ≈ 1.69103.

Corollary 2. The performance guarantee of the FFD based algorithm A of [15]
for perfect graphs is Π∞ + 1 ≈ 2.69103.

Note that Lemma 2 can be generalized as follows. For an integer z ≥ 1, let

π1(z) = z + 1, πi+1(z) = πi(z)(πi(z)− 1) + 1. Then Π∞(z) =
∞∑

i=1

1
πi(z)−1 .

Lemma 3. Consider a set of items J which consists of the contents of a sub-bin
of size 1

z . Then W (J) ≤ Π∞(z).

In order to analyze the algorithm with precoloring, we need to define a set of
weights which does not give very high weights to items in I1 = (1

2 , 1]. We define
the weight for sx ∈ I1 to be weight(x) = sx+ 1

6 . This unique definition it possible
due to the special treatment of items in I1.

In order to establish a lemma regarding the sum of weights in an independent
set, we modify the type of algorithms we allow to use. Once again, the set I
is partitioned into ν independent sets. Each independent set has at most one
item of size in I1. Out of these sets μ ≤ ν are packed using FFD. Each other
independent set J is packed into a single bin, and is assigned a total weight of
at least 1.

Lemma 4. An algorithm B as above satisfies B ≤ W (I) + μ.

We can now show a tight analysis of the FFD based algorithm with precoloring
given in [15]. That algorithm finds a coloring of all items with a minimum number
of colors, with the restriction that items of size in I1 receive distinct colors, and
then uses FFD to pack each color class. It was shown in [15] that the performance
guarantee of this algorithm is at most 2.5 and at least Π∞(3) + 2 ≈ 2.4231.

Theorem 1. The performance guarantee of the FFD based algorithm with pre-
coloring B of [15] is Π∞(3) + 2 ≈ 2.4231.

3 Improved Algorithms

In the previous section we showed better bounds for two variants of the prob-
lem, based on previously known algorithms from [15]. Though this already gives
an improvement over the previously known bounds, the bounds we have shown
are tight bounds, and thus further improvement is possible only using new algo-
rithms, which we now design. To analyze these algorithms we use weighting in
a more complex way.

On Bin Packing with Conflicts 167

3.1 Perfect Conflict Graphs

We design an algorithm which uses a preprocessing phase.

Algorithm Matching Preprocessing

1. Define the following bipartite graph. One set of vertices consists of all items
of size in I1. The other set of vertices consists of all other items. An edge
(a, b) between vertices of items of sizes sa >

1
2 and sb ≤ 1

2 occurs if the two
following conditions hold.
(a) sa + sb ≤ 1.
(b) (a, b) /∈ E(G).
That is, if these two items can be placed in a bin together. If this edge occurs,
we give it the cost c(a, b) = weight(b), where weight(b) is defined as above
to be sb + 1

j(j+1) , for the integer j such that sb ∈ (1
j+1 ,

1
j] .

2. Find a maximum cost matching in the bipartite graph.
3. Each pair of matched vertices are removed from G and packed into a bin

together.
4. Let G′ denote the induced subgraph over the items that were not packed in

the preprocessing.
5. Compute a feasible coloring of G′ using χ(G′) colors.
6. For each color class, apply the First-Fit-Decreasing algorithm.

Theorem 2. The above algorithm is a 5
2 = 2.5-approximation algorithm.

Proof. The outline of the proof is as follows. We assign weights according to an
optimal packing. Afterwards, we take the total weight and re-assign it to items
so that the total weight does not grow and the conditions of Corollary 1 hold.

Fix an optimal packing, OPT. For a bin with no items of size in I1, weights
are defined as before. For an item of size in I1 the weight is always 1. Given a bin
with an item of size in I1 which contains additional items, pick an item of largest
size in the bin among the items in the bin with size at most 1

2 , and give it weight
zero. All other items in the bin receive weights as before. Note that the items
which received zero weight, together with the items of size in I1 placed together
with them in the same bins of OPT form a valid matching in the bipartite graph,
whose cost is exactly the total reduction in the weights of items (compared to the
weights used for perfect graphs in Section 2). We use the notation weight1 for
this reduced weight function, and weight for the regular weight function (as used
in the proofs for perfect graphs in Section 2). Let ω be the cost of the matching
removed by the algorithm. Then by the optimality of the removed matching, we
conclude that

∑
x∈I

(weight(x) − weight1(x)) ≤ ω. We re-assign weights to items

so that an item of size in (0, 1
2] that was removed in the matching receives weight

zero, and any other item receives a weight as usual (as defined by the function
weight). This weight function (after the re-assignment) is called weight2. We
have

∑
x∈I

weight2(x) + ω =
∑
x∈I

weight(x) ≤ ω +
∑
x∈I

weight1(x). Therefore, the

total weight does not grow, and we may analyze the algorithm (but not OPT)

168 L. Epstein and A. Levin

using the weights weight2. Clearly, each of the bins removed by the algorithm
in the matching has weight of at least 1 since each of these contains an item of
unit weight. Therefore, we can use Corollary 1 since the weights of items that
are packed using FFD are the same as before.

Finally, we need to analyze the largest amount of weight that can be packed
into a single bin of OPT. Using Theorem 1, we can see that if all item sizes are
no larger than 1

2 , then this amount is smaller than 3
2 . We can use this as the

weights of all the items considered here, are the same as in that proof. Consider
now a bin with an item of size in I1. If this is the only item in the bin, then the
total weight is 1. Otherwise let x1 ≥ . . . ≥ xt be the sorted list of other items in
the bin, where x1 is the item which was assigned a zero weight in weight1. Let
j ≥ 2 be an integer such that x1 ∈ Ij . The total weight of the large item and

items x1, . . . , xt is therefore at most j+1
j (

t∑
i=2

sxi) + 1 ≤ 1 + j+1
j (1− 1

2 −
1

j+1) =

1 + j+1
2j −

1
j = 1 + j−1

2j < 3
2 . ��

Proposition 1. The approximation ratio of Algorithm Matching Preprocessing
is at least 2.5.

Remark 1. Algorithm Matching Preprocessing is a 2.5-approximation algorithm
for BPC on any hereditary class of graphs for which one can find in polynomial
time a coloring that uses a minimum number of colors.

3.2 Conflict Graphs That Belong to C
In this section we study an approximation algorithm for the case where the conflict
graph G belongs to C. I.e., given an induced subgraph of G, G′ = (V ′, E′) and a
set of vertices L′ ⊆ V ′, we can find a coloring of G using a minimum number of
colors such that each pair of vertices from L′ are assigned distinct colors.

We analyze the following algorithm. The weight function weight is defined as
in Section 2 for items with size at most 1

2 and for an item x such that sx ∈ I1,
weight(x) = sx + 1

6 . We can use Lemma 4 since our algorithm will follow its
conditions.

Algorithm Greedy Preprocessing

1. While there is a set of three items {a, b, c} that can fit into one bin (i.e.,
sa+sb+sc ≤ 1 and {a, b, c} is an independent set of G) such that weight(a)+
weight(b) + weight(c) > 1 and sc ≤ sb ≤ sa ≤ 1

2 , or two items {a, b} that
can fit into one bin (i.e., sa + sb ≤ 1 and {a, b} is an independent set of G)
such that weight(a) + weight(b) > 1 do as follows.

Choose such a set A of maximal total weight. Delete A from G, and assign
a new bin for the items of A that is dedicated to this set of items.

Denote by G′ = (V ′, E′) the resulting conflict graph induced by the
remaining items.

2. Denote the set of large items by L = {j ∈ V ′ : sj > 1
2}, and denote

by χI(G′) the minimum number of colors used by the optimal solution for

On Bin Packing with Conflicts 169

the precoloring extension problem defined by G′ and the set of precolored
vertices L. Compute a feasible coloring of G′ using χI(G′) colors, where any
two items in L are assigned different colors.

3. For each color class, apply the First-Fit-Decreasing algorithm.

Theorem 3. The approximation ratio of the above algorithm is exactly 7
3 ≈

2.33333.

3.3 Bipartite Graphs

In [15] it was shown that a simple algorithm which finds some coloring of
the graph with two colors, and packs each color class using Next-Fit, is a 2-
approximation. It was shown there that even if Next-Fit is replaced by FFD,
still this algorithm does not have a better approximation ratio.

We design an algorithm which gives special treatment to some of the prob-
lematic cases and thus get a 7

4 -approximation.
We start with an analysis of the algorithm above (with FFD), which we call

two-set (TS), as a function of the value OPT. Let A and B denote the sets of
items of the two colors. Let �(A) and �(B) denote the numbers of bins packed by
FFD for each of the two sets, let s(X) denote the sum of item sizes in a set X ,
i.e., s(X) =

∑
x∈X sx, and let OPT(X) denote the cost of an optimal solution

for a set X . Clearly, we have s(X) ≤ OPT(X) ≤ OPT for X = A, B, and also
OPT ≥ s(A) + s(B).

Simchi-Levi [27] proved that for any input Y , the solution of FFD on this
output satisfies FFD(Y) ≤ 3

2OPT(Y). Therefore, if the size of one of the sets
(without loss of generality, the set A) is small enough, namely, this set fits into
one bin s(A) ≤ 1, we get TS ≤ FFD(B) + 1 ≤ 3

2OPT + 1.
Otherwise, if for both sets, the output of FFD created at least one bin where

the smallest item that opens a new bin is in the interval (0, 1
3]. Then, for each

set A and B, all bins but the last one are occupied by more than 2
3 , and the

sum of items in the two last bins together is more than 1. We get for X = A, B,
s(X) > 2

3 (�(X)− 2) + 1. Thus TS ≤ �(A) + �(B) < 3
2OPT + 1.

Suppose next that both sets A and B do not have a bin opened by an item
with size in the interval (0, 1

3]. Then, we remove all items smaller than 1
3 from

the input. Clearly, the output does not change. Each bin contains an item of
size in (1

2 , 1] (and possibly one smaller item as well) or two items in the interval
(1
3 ,

1
2], except possibly the last bin for each set, that may contain a single item

of this last interval. Let Z denote the number of items of size in (1
2 , 1] in A ∪B

and let V denote the number of items from A∪B with size in the interval (1
3 ,

1
2].

Therefore, TS ≤ Z+ V −2
2 +2 = Z+ V

2 +1. However, for any packing and thus for
an optimal one we have that each bin contains at most one item with size larger
than 1

2 , and at most two items with size larger than 1
3 , thus we have OPT ≥ Z

and OPT ≥ Z+V
2 . We get TS ≤ Z+V

2 + Z
2 + 1 ≤ 3

2OPT + 1.
We are left with the case where (without loss of generality) the set A contains

a bin opened by an item in (0, 1
3], and B does not. If A does not contain a

bin opened by an item of size in (0, 1
4], we can remove all items smaller than

170 L. Epstein and A. Levin

1
4 from the input, and get the same output. Let Z denote again the number of
items in (1

2 , 1] and V denote the number of items in (1
4 ,

1
2]. We now argue that

V ≤ 3(OPT − Z) + Z = 3OPT − 2Z. this last inequality holds, since a bin
with an item larger than 1

2 , can contain at most one item larger than 1
4 , and any

other bin can contain at most three such items. Therefore, TS ≤ Z+ V −2
2 +2 ≤

Z + 3
2OPT− Z + 1 ≤ 3

2OPT + 1.
Finally, we need to consider the case that A contains at least one bin opened

by an item of size in (0, 1
4], and B does not have a bin opened by an item whose

size is at most 1
3 . Thus all bins of A but the last one are occupied by more than

3
4 . We get s(A) > 3

4 (�(A)− 2) + 1 and s(B) > 1
2�(B). The last inequality holds

for any Any-Fit type algorithm, and for FFD in particular. Moreover, note that
the packing of B is an optimal one. This can be proved using simple exchange
arguments (see [27]). Thus we have �(B) ≤ OPT. We get OPT ≥ s(A)+s(B) >
3
4�(A) + 1

2�(B)− 1
2 . Thus SL < 4

3OPT + 2
3 + 1

3OPT = 5
3OPT + 2

3 . Since both
OPT and SL are integers, we get SL ≤ 5

3OPT + 1
3 .

Lemma 5. If OPT ≥ 3 then the algorithm above satisfies SL ≤ 7
4OPT and

this bound is tight when OPT = 4.

As we can see, the only case which is left is OPT = 2 which requires a special
treatment. This case can be identified by a solution of cost 4. Clearly, such solu-
tions can be achieved also for OPT = 3 and OPT = 4. We define an algorithm
and prove that it succeeds if OPT = 2. Thus, if it fails, then OPT ≥ 3 which
means that the original solution already does not violate the approximation ratio
7
4 which we would like to prove. We call this algorithm modified Two-Set.

If OPT = 2, this means that it is possible to color the input using two colors,
and pack each independent set into a single bin. If the conflict graph is connected,
there is a unique way to color the items, and thus this optimal packing can be
achieved. However, a bipartite disconnected graph has more than one possible
coloring with two colors, since the roles of the two colors in each connected
component can be swapped. As a first step, we color each connected component
using two colors. Let z be the number of components, and denote the items of
component i by Vi. For each 1 ≤ i ≤ z, we get two sets Ai and Bi, such that
Ai ∪ Bi = Vi and Ai ∩ Bi = ∅. Each set contains the vertices of Vi that share
a color. We define pi = |s(Ai) − s(Bi)|. Let qi = max{s(Ai), s(Bi)} − pi. The
sizes pi define a scheduling problem on two machines. We run LPT (Longest
Processing Time First) on this input. This means that we initialize two empty
sets, A and B. Sort the sizes pi in non-increasing order. Then starting from the
largest size, we assign each size to the set whose total sum is minimal. Graham
[10] defined and analyzed this algorithm for an arbitrary number of machines
(subsets). It is not difficult to see that when the algorithm terminates, we have
|s(A) − s(B)| ≤ pk, where k is the last index of size assigned to the set with
larger sum. For 1 ≤ i ≤ z, we define a coloring using two colors (which are
defined by the sets C and D) as follows. If s(Ai) ≥ s(Bi), and pi is in A or if
s(Ai) < s(Bi), and pi is in B, assign the items in Ai to C and the items in Bi

to D. Otherwise assign the items in Bi to C and the items in Ai to D. This

On Bin Packing with Conflicts 171

assignment means that s(C) =
∑
i∈A

pi +
z∑

i=1

qi and s(D) =
∑
i∈B

pi +
z∑

i=1

qi. Thus

we have |s(C) − s(D)| ≤ pk as well. Assume (without loss of generality) that
s(C) ≥ s(D). Since OPT = 2, S(C) + S(D) ≤ 2. Thus s(D) ≤ 1 and all the
items assigned to D fit into a single bin. Now remove pk + qk from s(C). We get
a total of less than s(D) ≤ 1, and thus the remaining items of C fit into one
bin. Finally the items of the larger set among s(Ak) and s(Bk) must be packed
together in a solution with two bins only, and since OPT = 2, we get that these
items also fit into one bin.

Theorem 4. Algorithm modified Two-Set has an approximation ratio of
exactly 7

4 .

Proof. We showed that if OPT = 2, the process above succeeds to pack the
input into two bins. Otherwise, the theorem follows from Lemma 5. ��

4 Online Algorithms

In this section we discuss online algorithms for interval graphs. For many classes
of graphs, the online problem is hard to approximate. The coloring problem is a
special case of BPC, where all item sizes are zero.

Consider e.g. the problem on trees. Gyárfás and Lehel [11] proved a deter-
ministic lower bound of Ω(log n) on the online coloring of bipartite graphs on n
vertices, which holds already for trees. Lovász, Saks and Trotter [20] showed an
online coloring algorithm which colors such a graph (which is 2 colorable) using
O(log n) colors. This immediately implies an online coloring algorithm for BPC
on bipartite graphs, which is optimal up to a constant multiplicative factor on
the competitive ratio. This algorithm A uses the algorithm of [20] to color the
conflict graph using C colors. Then each color class is colored by some reasonable
algorithm, e.g. Next-Fit. We get that for each color class i, which contains �i bins,
the total size of items Si is more than �i−1

2 (since no two consecutive bins can be

combined). We get that A ≤
C∑

i=1

�i <
C∑

i=1

(2Si+1) ≤ 2OPT+C ≤ O(log n)OPT.

Since the same can be applied for any graph class for which no constant com-
petitive algorithm exists, we focus on a graph class for which such an algorithm
exists, namely, interval graphs. Kierstead and Trotter [18] constructed an online
coloring algorithm for interval graphs which uses at most 3ω− 2 colors where ω
is the maximum clique size of the graph. They also presented a matching lower
bound of 3ω − 2 on the number of colors in a coloring of an arbitrary online
coloring algorithm. Note that the chromatic number of interval graphs equals to
the size of a maximum clique, which is equivalent in the case of interval graphs
to the largest number of intervals that intersect any point (see [16,9]). The tech-
nique above implies a 5-competitive algorithm. We can show that using First-Fit
(FF) instead of Next-Fit for coloring each class slightly improves this bound.

172 L. Epstein and A. Levin

Theorem 5. The algorithm of [18] combined with FF for coloring each class
has competitive ratio 4.7.

We can show that an algorithm of much smaller competitive ratio does not exist.

Theorem 6. The competitive ratio of any online algorithm for BPC on interval
graphs has competitive ratio of at least 155

36 ≈ 4.30556.

In order to prove this theorem, we prove the following two lemmas.

Lemma 6. Let c be a lower bound on the asymptotic competitive ratio of any
online algorithm for standard bin packing, which knows the value OPT in ad-
vance. Then the competitive ratio for any online algorithm for BPC on interval
graphs has competitive ratio of at least 3 + c.

Lemma 7. Any online algorithm for standard bin packing, which knows the
value OPT in advance, has competitive ratio of at least 47

36 ≈ 1.30556.

5 Conclusion

We have improved the upper bounds for BPC on perfect graphs, interval graphs
(and a few related classes) and bipartite graphs. Most our results follow from
adaptation of weighting systems to enable analysis of algorithms for BPC, and
new algorithms which carefully remove small subgraphs of items which cause
problematic instances. There is still a gap between the inapproximability which
follows from bin packing, and the upper bounds. An open problem would be to
close this gap.

Another open question is the following. As in [15], we used the absolute ap-
proximation ratio to analyze the performance of our algorithms. It can be seen
that using the asymptotic approximation ratio, we can achieve a slightly better
upper bound for bipartite graphs. It is unclear whether the same is true for
other graph classes, i.e., whether the asymptotic approximation ratio for BPC
is strictly lower than the absolute one for some cases.

References

1. E. Arkin and R. Hassin. On local search for weighted packing problems. Mathe-
matics of Operations Research, 23:640–648, 1998.

2. B. S. Baker and E. G. Coffman, Jr. A tight asymptotic bound for next-fit-decreasing
bin-packing. SIAM J. on Algebraic and Discrete Methods, 2(2):147–152, 1981.

3. E. G. Coffman, Jr., J. Csirik, and J. Leung. Variants of classical bin packing. In
T. F. Gonzalez, editor, Approximation algorithms and metaheuristics. Chapman
and Hall/CRC. To appear.

4. P. Crescenzi, V. Kann, M. M. Halldórsson, M. Karpinski, and G. J. Woeginger.
A compendium of NP optimization problems. http://www.nada.kth.se/ viggo/
problemlist/compendium.html.

5. D. de Werra. An introduction to timetabling. European Journal of Operational
Research, 19:151–162, 1985.

On Bin Packing with Conflicts 173

6. G. Galambos and G. J. Woeginger. Repacking helps in bounded space online bin
packing. Computing, 49:329–338, 1993.

7. M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. C. Yao. Resource constrained
scheduling as generalized bin packing. Journal of Combinatorial Theory (Series
A), 21:257–298, 1976.

8. M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman
and Company, New York, 1979.

9. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

10. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17:263–269, 1969.

11. A. Gyárfás and J. Lehel. On-line and first-fit colorings of graphs. Journal of Graph
Theory, 12:217–227, 1988.

12. M. Hujter and Z. Tuza. Precoloring extension, III: Classes of perfect graphs.
Combinatorics, Probability and Computing, 5:35–56, 1996.

13. S. Irani and V. J. Leung. Scheduling with conflicts, and applications to traffic signal
control. In Proc. of 7th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’96), pages 85–94, 1996.

14. K. Jansen. An approximation scheme for bin packing with conflicts. Journal of
Combinatorial Optimization, 3(4):363–377, 1999.

15. K. Jansen and S. Öhring. Approximation algorithms for time constrained schedul-
ing. Information and Computation, 132:85–108, 1997.

16. T. R. Jensen and B. Toft. Graph coloring problems. Wiley, 1995.
17. D. S. Johnson, A. Demers, J. D. Ullman, Michael R. Garey, and Ronald L. Graham.

Worst-case performance bounds for simple one-dimensional packing algorithms.
SIAM Journal on Computing, 3:256–278, 1974.

18. H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combina-
torics. Congressus Numerantium, 33:143–153, 1981.

19. C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the
ACM, 32(3):562–572, 1985.

20. L. Lovász, M. Saks, and W. T. Trotter. An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Math., 75:319–325, 1989.

21. D. Marx. Precoloring extension. http://www.cs.bme.hu/ dmarx/prext.html.
22. D. Marx. Precoloring extension on chordal graphs. manuscript, 2004.
23. B. McCloskey and A. Shankar. Approaches to bin packing with clique-graph con-

flicts. Technical Report UCB/CSD-05-1378, EECS Department, University of Cal-
ifornia, Berkeley, 2005.

24. Y. Oh and S. H. Son. On a constrained bin-packing problem. Technical Report
CS-95-14, Department of Computer Science, University of Virginia, 1995.

25. A. Schrijver. Combinatorial optimization polyhedra and efficiency. Springer-Verlag,
2003.

26. S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–
671, 2002.

27. D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res.
Logist., 41(4):579–585, 1994.

28. J. D. Ullman. The performance of a memory allocation algorithm. Technical
Report 100, Princeton University, Princeton, NJ, 1971.

29. A. van Vliet. An improved lower bound for online bin packing algorithms. Infor-
mation Processing Letters, 43(5):277–284, 1992.

30. A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227,
1980.

Approximate Distance Queries in Disk Graphs

Martin Fürer and Shiva Prasad Kasiviswanathan

Computer Science and Engineering, Pennsylvania State University
{furer,kasivisw}@cse.psu.edu

Abstract. We present efficient algorithms for approximately answering
distance queries in disk graphs. Let G be a disk graph with n vertices
and m edges. For any fixed ε > 0, we show that G can be preprocessed
in O(m

√
nε−1 + mε−2 log S) time, constructing a data structure of size

O(n3/2ε−1 + nε−2 log S), such that any subsequent distance query can
be answered approximately in O(

√
nε−1 + ε−2 log S) time. Here S is the

ratio between the largest and smallest radius. The estimate produced is
within an additive error which is only ε times the longest edge on some
shortest path.

The algorithm uses an efficient subdivision of the plane to construct
a sparse graph having many of the same distance properties as the input
disk graph. Additionally, the sparse graph has a small separator decom-
position, which is then used to answer distance queries. The algorithm
extends naturally to the higher dimensional ball graphs.

1 Introduction

In this paper we consider the problem of preprocessing a graph such that sub-
sequent distance queries can be answered quickly within a small error. This
natural extension to the all pairs shortest path problem captures practical situ-
ations, where more often than not, we are interested in estimating the distance
between two vertices quickly and accurately. In this framework, the goodness
of an algorithm is typically measured in terms of the preprocessing time, query
time, space complexity and approximation factor (if any).

A disk graph is an intersection graph of disks in the plane. We consider
weighted disk graphs where the weight of an edge is the Euclidean distance
between centers. We present a new method for answering distance queries in
disk graphs within an additive error which is only ε times the longest edge on
some shortest path. The results are also extended to their higher dimensional
versions, the ball graphs. The difficulty in answering queries for the disk graph
metric when compared to the metric induced by a complete Euclidean graph
(where it is trivial) is that two points that are spatially close are not necessarily
close under the graph metric.

The algorithm uses a hierarchical subdivision of the plane into tiles of different
sizes to replace the (possibly dense) disk graph by a sparse graph having many of
the same distance properties. The sparse graph has a small geometric separator
decomposition, which is then exploited for answering distance queries. The input
graph might have no small separator, it could even be complete.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 174–187, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximate Distance Queries in Disk Graphs 175

Disk graphs have been used widely to model the communication between
objects in VLSI [1] and recently in the context of wireless ad-hoc networks [2,3].
For wireless networks they model the fact that two wireless nodes can directly
communicate with each other only if they are within a certain distance.

Distance queries are important in disk graphs as they are widely used to
determine coverage in wireless sensor networks, and for routing protocols [4,5,6].
In most potential applications (like military) one would not only desire high
accuracy of these estimates but also the actual path producing this estimate.
Our approximation algorithms are designed keeping this in mind.

1.1 Related Work

Let G = (V,E) be a weighted graph, and let dG(u, v) denote the length of a short-
est path between vertices u and v in G. An estimate δ(u, v) of the path length
dG(u, v) is said to be a c-stretch if it satisfies dG(u, v) ≤ δ(u, v) ≤ cdG(u, v). For
general undirected graphs, Thorup and Zwick [7] show that for any c ≥ 1, a graph
with n vertices and m edges can be preprocessed in O(cmn1/c) expected time,
constructing a data structure of size O(cn1+1/c), such that a (2c−1)-stretch an-
swer to any distance query can be produced in O(c) time. Many other time-space
trade-off results are also known (See Zwick’s [8] survey on this subject).

For unit disk graphs, Gao and Zhang [6] gave a construction of a c-well-
separated pair decomposition (introduced by Callahan and Kosaraju in [9]) with
O(n log n) pairs for any constant c ≥ 1. Using the well-separated pair decomposi-
tion and O(n

√
n lognε−3) time preprocessing, they show that an (1 + ε)-stretch

answer to any distance query can be produced in O(1) time. They also show
that for unit ball graphs in Rk at least Ω(n2−2/k) pairs are needed for the well-
separated pair decomposition. However, one cannot hope to extend these results
to general disks graphs, as general disk graphs do not have a sub-quadratic well-
separated pair-decomposition. One such example is the star graph, formed by a
big disk and n− 1 pairwise disjoint small disks intersecting the big disk.

In a very recent paper [10] the authors have used similar techniques as in
this paper to devise a sub-quadratic time algorithm for constructing spanners
of ball graphs. It is also shown that after O(n2−1/k ε−k+1/2 + ε−2k+1 logS) time
and space preprocessing an (1 + ε)-stretch answer to any distance query can be
produced in O(n1−1/k ε−k+1/2 + ε−2k+1 logS) time and a (2 + ε)-stretch answer
in O(log n) time. The lower cost of preprocessing comes with a trade-off of worse
error guarantees.

2 Preliminaries

Let P be a set of points in Rk for any fixed dimension k. Let D be a set of
n balls such that (i) Du ∈ D is centered at u ∈ P , and (ii) Du has radius of
ru. Balls Du and Dv intersect if d(u, v) ≤ (ru + rv), where d(., .) denotes the
Euclidean metric. The ball graph G is a weighted graph where an edge between
u and v with weight d(u, v) exists if Du and Dv intersect. Let dG denote the
metric induced by the connected graph G on its vertices by shortest paths.

176 M. Fürer and S.P. Kasiviswanathan

We use m to denote the number of edges in graph G. We require that the
input to the algorithms is the set of balls, not only the corresponding intersection
graph. We re-scale to ensure that in D, for every ball Du there exists at least one
ball center outside Du. We then re-scale the balls such that the largest radius
equals one. The global scale factor (ratio between largest and smallest radius)
of D is then defined as

ρ(D) = 1/min{ru | Du ∈ D} .

For disk graphs our algorithms use a variant of quadtrees. For a node s, denote
by P (s) the parent of s in the tree. We use ds to denote the depth of node s in
the tree. A point (x, y) is contained in a node s representing a square with center
(xs, ys) and length ls iff xs− ls/2 ≤ x < xs + ls/2 and ys− ls/2 ≤ y < ys + ls/2.
For a set of squares S in the quadtree a point is contained in S iff there exists
s ∈ S, such that point is contained in s. For two squares s and s′, the distance
dist(s, s′) is the Euclidean distance between their centers.

To avoid ambiguities, throughout the paper we refer to the vertices of a graph
as vertices and vertices of a tree as nodes. We assume w.l.o.g. that ε−1 is a power
of 2. Floors and ceilings are omitted throughout the paper, unless needed.

2.1 Separators and Separator Decomposition

A subset of vertices S of a graph G with n vertices is an f(n)-separator that α-
splits (α < 1) if |S| ≤ f(n) and the vertices of G−S can be partitioned into two
sets V1 and V2 such that there are no edges from V1 to V2, max{|V1|, |V2|} ≤ αn,
where f is a function. An f(K)-separator decomposition of G is a recursive
decomposition of G using separators, where subgraphs of size K have separators
of size O(f(K)).

We use a rooted binary tree TG to represent a separator decomposition of
a graph G = (V,E). For a set V ′ of vertices in G, we use Ne(V ′) to denote
the neighborhood of V ′. Each node t ∈ TG is labeled by two subsets of vertices
V (t) ⊆ V and S(t) ⊆ V (t). Let G(t) = (V (t), E(t)) denote the subgraph induced
by V (t). Then S(t) is the separator in G(t). The root r ∈ TG has V (r) = V and
S(r) is a separator in G. For any t ∈ TG, the labels of its children t0, t1 are
defined as follows: let V1 ⊂ V (t) and V2 ⊂ V (t) be the components separated by
S(t) in G(t). Then V (t0) = V1 ∪ (S(t) ∩Ne(V1)), V (t1) = V2 ∪ (S(t) ∩Ne(V2)).

2.2 Our Contributions

In this paper we use a quadtree like partitioning scheme to construct a new
sparse graph. Given an input ball (disk) graph G = (V,E) a weighted graph
G′ = (V ′, E′) is constructed such that: (i) V ′ is a subset of V , (ii) every vertex
in G is close to some vertex in G′ under the dG metric, and (iii) the distance
between any two vertices present in G′ is not much larger than the distance
between them in G. We refer to the elements of V ′ as the representative vertices.
We call G′ the cluster graph of G.

Approximate Distance Queries in Disk Graphs 177

For any fixed ε > 0, an estimate δ(u, v) of the distance between u and v is said
to be (1 + ε)-approximate if dG(u, v) ≤ δ(u, v) ≤ dG(u, v) + εdG(u, v). We define
a stronger notion called strong (1 + ε)-approximation. An (1 + ε)-approximate
estimate δ(u, v) is said to be strong if dG(u, v) ≤ δ(u, v) ≤ dG(u, v) + ε�(u, v),
where

�(u, v) = max{� | ∃ a shortest path in G between u and v of edge length �} .

Let G be a ball graph defined on D, we show that after O(mn1−1/k ε−k+1 +
mε−k log ρ(D)) time and O(n2−1/k ε−k+1 + nε−k log ρ(D)) space preprocessing,
a strong (1 + ε)-approximate estimate for the distance between any two vertices
can be obtained in O(n1−1/k ε−k+1 + ε−k log ρ(D)) time. We can also output a
corresponding short path between the query vertices in O(L) time, where L is
the number of edges of the reported path. In all our cases �(u, v) is strictly less
than dG(u, v). Therefore our approximation is strictly better than the standard
(1 + ε)-approximation.

To illustrate the main ideas in our algorithm we start by considering the easier
case where all the disks have almost the same radius, i.e., when every radius is
Θ(1).

3 Distance Queries in Almost Unit Disk Graphs

We first describe the construction of the cluster graph G′ and then the algorithm
for finding a separator decomposition.

Imposing the Grid: The input to our algorithm is a set of disks in R2. Let
P be the set of their centers. The bounding box of P is the smallest rectangle
enclosing P . We assume the left bottom corner as the origin. An ε-grid is defined
by horizontal and vertical line segments drawn at y ∈ εZ and x ∈ εZ within the
bounding box.

Constructing G′: Let Roots represent the non-empty squares of the ε-grid.
For every square s ∈ Roots, the vertices contained in s form a clique in G. One
such vertex is chosen as the representative, Rs. Define the neighborhood N(s),
as the set of all s′ ∈ Roots which are within a distance of 2 from s. Note that the
choice of distance 2 here is for the case where all the disks have the same radius.
In general one can upper bound this distance as twice the radius of largest disk
in D. The vertices of G′ are the representatives of the squares in Roots and the
edge (Rs, Rs′) is added to G′ if s′ ∈ N(s) (see Figure 1). For every square s,
|N(s)| = O(ε−2). Since the graph G′ has at most n vertices, it can be constructed
in O(nε−2) time.

Separator in G′: A
√
nε−1-vertex separator in G′ with 2/3-split can be found

in O(n log n) by noting that G′ is an O(ε−1)-overlap graph as defined by Miller
et al. [11] and by using their results for geometric separators on these graphs.
In Appendix A, we provide a simpler algorithm having the same running time,
but guaranteeing a superior split ratio.

178 M. Fürer and S.P. Kasiviswanathan

Fig. 1. The grid with ε = 1/2. The centers of solid disks are the representative vertices
used in G′. The centers of dotted disks are ignored. The edges of G′ are also shown.

Theorem 1. Let G be an (almost) unit disk graph and G′ be the cluster graph
constructed from G as described above. An O(

√
nε−1)-separator decomposition

with 1/2-split of G′ can be found in O(n log n) time.

Strong (1 + ε)-approximate answers to distance queries: The query algo-
rithm is similar to the one used by Arikati et al. [12]. We discuss the procedure
for a single node t ∈ TG′. The preprocessing phase involves the following steps:
(i) Compute TG′ the separator decomposition tree for G′. (ii) Let H(t) denote
the graph induced by the set of vertices

{v | ∃s ∈ Roots ∃u ∈ V (t) such that u = Rs and v is contained in s}

on G. Intuitively the graph H(t) is the induced graph of vertices belonging to
either V (t) or contained in the same square as a vertex in V (t). From each node
in S(t) do a single source shortest path (Sssp) computation on H(t).

The query procedure for finding an approximately shortest path between the
vertices u and v of G consists of the following steps: (i) If there is an edge
between u and v, set δ(u, v) to d(u, v). (ii) Otherwise, (a) Initialize δ(u, v) to ∞.
(b) Compute s(u) and s(v) as nodes in Roots with u contained in s(u) and v in
s(v). (c) Find the least common ancestor of Rs(u) and Rs(v) in TG′ , say t′. (d)
Estimate δ(u, v) as min{δ(u, v),minz∈S(t′){dG(u, z)+ dG(z, v)}}. (e) If t′ is not
the root of TG′ , set t′ = P (t′) and repeat step (d).

Using the algorithm of Schieber and Vishkin [13], the least common ancestor
queries can be answered in O(1) time after linear time preprocessing. The proof
of correctness of the algorithm follows as in [12] and is omitted in this extended
abstract.

Theorem 2. Let G be an (almost) unit disk graph with m = Ω(n logn) edges.
The graph G can be preprocessed in O(m

√
nε−1) time, producing a data structure

of size O(n3/2ε−1), such that subsequent distance queries can be answered approx-
imately, in O(

√
nε−1) time. The outputs produced are strong (1+ε)-approximate

distance estimates.

Approximate Distance Queries in Disk Graphs 179

Proof. If there is an edge between u and v in G, then the actual distance
is the estimate. Otherwise, we know dG(u, v) > 2. Consider a shortest path
Ps = (u1, u2, . . . , uk) between u1 = u and uk = v with no shortcuts, i.e., no edge
from uj−1 to uj+1 for any j between 2 and k − 1. Such a path Ps exists due to
the triangle inequality. Since d(uj−1, uj+1) > 2, max{d(uj−1, uj), d(uj , uj+1)} ≥
1. Let (s(u1), s(u2), . . . , s(uk)) be the sequence of squares in Roots such that
s(ui) contains ui. We know the path (Rs(u1), . . . , Rs(uk)) exists in G′. Let t be
a minimal depth node in TG′ where this path gets separated. This implies that
among the vertices {Rs(u1), . . . , Rs(uk)} at least one is in S(t), say Rs(ui).

We compute single source shortest path from the vertex Rs(ui), which is at
most

√
2ε distance away from ui. There is also an edge between ui and Rs(ui) in

G. This proves that the estimate is only O(ε) greater than actual shortest path.
It is also a strong (1 + ε)-approximate estimate, because there exists an edge in
the path of Ps with length at least 1.

The running time of the preprocessing is dominated by the time for running
Sssp from all the separator nodes. Using Dijkstra for Sssp gives a running time
of O(m

√
nε−1) for the preprocessing phase. The storage needed for all the results

of Sssp computations is O(n3/2ε−1). The query time is dominated by Steps (d)
and (e) of the query algorithm and can be bounded by O(

√
nε−1). ❑

4 Distance Queries in Ball Graphs

In this section we extend the results to arbitrary ball graphs. Again we describe
the algorithm for the case of disk graphs and then state the extensions to higher
dimensions. Let G denote the input disk graph. Each disk is associated with a
level, a disk Du is of level l if: 2−l ≤ ru < 2−l+1. Let lmin denote the level of the
smallest disk in D, i.e., lmin = �log ρ(D)�. The level lmin is the deepest level in Γ .

Imposing the Grid: We impose an ε-grid as in the case of unit disk graphs.
Additionally, we recursively subdivide each non empty square in the ε-grid using
a simple variant of quadtrees. We view this subdivision as a 4-ary forest with the
root nodes as the non-empty squares in the ε-grid. Each square is partitioned into
four equal squares, which form its children. We continue partitioning the non-
empty squares until the size of the squares becomes ε2−lmin . This construction
differs from the standard quadtrees in: (a) when we stop partitioning it is not
necessary that each square contains only one point, and (b) unlike in quadtrees
we don’t stop the partitioning as soon as the square has only one point inside
it. We call this procedure dissection of the ε-grid.

Constructing G′: Let Γ denote the forest from the dissection of the ε-grid. Let
Roots initially be the collection of non-empty squares of the ε-grid.Γ is a collection
of disjoint trees, each of which is rooted at a node of Roots. We introduce a disk
of level l only at depth l in Γ . For a node s ∈ Γ , the set C(s) only consists of disks
which are of level ds or less, and whose centers are contained in s. We also add to
Roots any node s ∈ Γ satisfying, C(s)
= Ø whereas C(P (s)) = Ø.

180 M. Fürer and S.P. Kasiviswanathan

For a leaf node s in Γ we pick one of the vertices in C(s) as its representative
Rs. For an internal node s, we pick one of its children s′ satisfying Rs′ ∈ C(s)
and set Rs to Rs′ . For every node s /∈ Roots, we define its neighborhood N(s)
as the set of all nodes at depth ds which are within a distance of 2−ds from s. To
define the neighborhood of a node s ∈ Roots, we introduce some new definitions.
For a node s, define

region(s) = {s′ ∈ Γ | dist(s, s′) lies in [2−ds+1, 2−ds+2] and ds = ds′},
Region(s) =

⋃
s′ = s or s′ is an ancestor of s in Γ

region(s′) .

Empty squares can be ignored. The neighborhood of a node s ∈ Roots is now
defined as

N(s) = Region(s) ∪ {s′ ∈ Γ | s’ is at most 2−ds+1 from s and ds = ds′} .

The idea behind creating the regions is to ensure that disks that intersect
any disk centered in s, have their centers either close to s or inside a node of
Region(s) (Lemma 1). A similar idea has been used in [10] in the construction
of spanners of disk graphs. See also Figure 2.

Fig. 2. Neighborhood of a node s belonging to Roots

Lemma 1. Let u be a disk center contained in node s ∈ Roots. Then for every
edge (u, v) in G, v is contained in N(s).
Proof. Trivially if d(u, v) ≤ 2−ds+1 then v ∈ N(s). If 2−ds+1 < d(u, v) ≤ 2−ds+2

then v is contained in region(s). If 2−ds+2 < d(u, v) ≤ 2−ds+3 then v is contained
in region(P (s)). Similarly for every increase in the distance by a factor of 2, we
move one position up in Γ to finish the proof. ❑

The vertices of G′ are the representatives of the nodes in Γ and the edge (Rs, Rs′)
is added to G′ if s′ ∈ N(s). The forest Γ can be constructed in O(n log ρ(D))
time. The graph G′ can be constructed in O(nε−2 log ρ(D)) time.

Representative path of an edge: We now define a representative path in G′ for
every edge of G. For a vertex w in G, let s(w) denote the deepest level node in Γ

Approximate Distance Queries in Disk Graphs 181

containing w. Consider an edge (u, v) of the graph G. In the rest of the discussion
we assume w.l.o.g. that ru ≤ rv. The representative path P (u, v) starts at Rs(u)

and ends at Rs(v). The following lemma is useful for defining the path.

Lemma 2. Let u and v be two vertices in G′ such that there exists a node s ∈ Γ
containing both u and v, with v ∈ C(s). Then there exists a path from u to v in G′.

Proof. The proof is by induction over the number of nodes contained in s. The
base case is when s contains only one vertex. Now in the subtree of Γ rooted at
s, consider the node s1 at which u and v split, i.e., children of s1 containing u
and v are different. The splitting is guaranteed as u and v are representatives for
different nodes at the deepest level in Γ . Let s2 be the closest descendant of s1
containing u with C(s2)
= Ø. Let s3 be the child of s1 containing v. In G′ there
exists an edge (Rs2 , Rs3). By the inductive hypothesis we know there exists a
path between u and Rs2 and between v and Rs3 . Thus in G′ there exists a path
(u, . . . , Rs2 , Rs3 , . . . , v). ❑

Let a be the deepest node in Roots containing u. Let b be a node in Γ containing
v with da = db. Since u and Rs(u) (similarly v and Rs(v)) are always contained in
the same node in Γ , we get that Rs(u) is contained in a and Rs(v) is contained in
b. The representative path P (u, v) for an edge (u, v) is defined using the following
case distinction:

Case 1: If the distance between a and b is greater than 2−da+1, then by Lemma
1, we know that there exists some c ∈ Region(a) containing v (and thus also
Rs(v)). Since dist(a, c) ≥ 2−dc+1, we also know that rv ≥ 2−dc and v ∈ C(c).
In G′ there is an edge between Ra and Rc. From Lemma 2, we know there
exists a path in G′ between Rs(u) and Ra and between Rs(v) and Rc. Define the
representative path P (u, v) as (Rs(u), . . . , Ra, Rc, . . . , Rs(v)).

Case 2: Otherwise, consider the deepest nodes f, g in Γ , such that (i) Rs(u)

is contained in f and Rs(v) is contained in g, and (ii) there exists an edge
(Rf , Rg) in G′. From Lemma 2, we know there exists a path between Rs(u) to
Rf and between Rs(v) and Rg in G′. Define the representative path P (u, v) as
(Rs(u), . . . , Rf , Rg, . . . , Rs(v)).

For every representative path, we also define a pair of nodes in Γ as its covering
nodes. If P (u, v) is defined using Case 1, then the nodes a and c are the covering
nodes. If P (u, v) is defined using Case 2, then f and g are the covering nodes.
In both cases, all vertices in P (u, v) are contained in one of the covering nodes
with u and v contained in different covering nodes.

Lemma 3. Let (u, v) be an edge in G of length greater than 2−lmin. Let P (u, v)
be its representative path in G′ with p and q as the covering nodes. Then
dist(p, q) ≥ max{c12−dp , c12−dq}, for some constant c1.

Proof. We again use the same case distinction as in defining the path P (u, v).
Assume p contains u, and q contains v. If P (u, v) is defined using Case 1, then dp ≥
dq. Let r be the ancestor of p which is at the same depth as q. Since q is at least
2−dq+1 away from r, we get that that dist(p, q) ≥ c12−dq (p is a square inside r).

182 M. Fürer and S.P. Kasiviswanathan

If P (u, v) is defined using Case 2, then dp = dq. Let p′ be the child of p
containing u. Let q′ be child of q containing v. Since there is no edge between Rp′

and Rq′ , we conclude dist(p′, q′) ≥ 2−dq−1. This implies that dist(p, q) ≥ c12−dq .
The existence of nodes p′ and q′ is guaranteed if d(u, v) ≥ (1 + ε/

√
2)2−lmin .

Otherwise, dist(p, q) = Ω(2lmin) and again dist(p, q) ≥ c12−dq . ❑

Separator in G′: We now show that a
√
nε−1+ε−2 log ρ(D)-vertex separator in

G′ with 7/9-split1 can be found in O(n log n). Similar ideas were used in [10] for
finding a separator in the spanner of a disk graph. We use recursive partitions of
rectangles. Let D(l) be the set of all vertices (disk centers) which were chosen as
representatives at level l of Γ . For a rectangle R, let X (R) be the sorted list of
x-coordinates of vertices of G′ which are contained in R (similarly define Y(R)
for y-coordinates). We say a vertex crosses a given line if any edge incident on
it in G′ crosses the line.

At every step, the algorithm focuses on one rectangle, which we call the active
rectangle. An active rectangle R has at least 2/3 of the vertices of G′ inside it
and there exists a set of O(

√
nε−1 + ε−2 log ρ(D)) vertices which when removed

ensures that no remaining vertex of G′ has an edge that crosses the boundary
of R.

A vertical double line separator of an active rectangle is a set of at most two
vertical line segments that partitions the active rectangle, such that there exists
a set of O(

√
nε−1 + ε−2 log ρ(D)) vertices which when removed ensures that no

remaining vertex crosses the vertical line segments (similarly define horizontal
double line separator). Our algorithm recursively partitions an active rectangle
alternatively with a vertical or a horizontal double line separator and stops when
none of the new rectangles created contains enough vertices to become active.

Starting from the topmost level in Γ , we do the following step at every level
l of Γ . The initial rectangle is the bounding box (and is active).

Constructing double line separators at level l: Let R be the currently
active rectangle. Let X (R) = {x1, x2, . . .}. We maintain sorted doubly linked lists
for both the x- and y- coordinates with pointers between elements representing
the same point in the two lists. Therefore in going to R from the previous active
rectangle Rp, the lists X (R) and Y(R) can be constructed in time proportional
to the number of points removed from Rp to R.

Let xm denote the median of X (R). Starting at xm we scan over the lower half
list of X till we encounter the first xl, such that xl−xl−√

nε−1 ≥ (1+ε/
√

2)2−l+1.
We define a vertical line segment (L1) at x = xl with its end-points at boundaries
of R. Similarly starting from xm, we scan over the upper half list of X (R) to
find the first xr such that xr+

√
nε−1 − xr ≥ (1 + ε/

√
2)2−l+1. Again we define a

similar vertical line segment (L2) at x = xr.
L1 and L2 divide R into at most 3 rectangles, of which only the rectangle

(Rc) between L1 and L2 could be active. If Rc is active, we repeat the same
procedure with Y(Rc) to find horizontal line segments L3 and L4. The active
rectangle (if any) created is associated with the level l+ 1.

1 A superior 2/3-split can be achieved by a more careful analysis.

Approximate Distance Queries in Disk Graphs 183

Lemma 4. The distance between vertical line separators L1 and L2 defined at
depth l is less than (1 + ε/

√
2)2−l+1

√
nε.

Proof. We move in the lower (or upper list) only if there are
√
nε−1 vertices

to the left (or right) within a distance of (1 + ε/
√

2)2−l+1. Since there are only
n disks, the result follows. ❑

Remark. The same distance bound holds also for the distance between L3 and
L4. As a consequence of the above lemma we also get that the lengths of L1 and
L2 for l ≥ 1 is at most (1 + ε/

√
2)2−l+2

√
nε (consider separation between line

separators at level l − 1). We use the upper bound of 2−l+3√nε for the lengths
of L1 and L2 in the proof.

Lemma 5. Let R be an active rectangle at depth l. L1 and L2 define a vertical
double line separator for R.

Proof. We work with L1. The case for L2 is similar. Every edge in G′ is
attributed to the disk of larger radius, i.e., an edge (u, v) in G′ is attributed
to u if ru ≥ rv. First consider the edges attributed to vertices in

⋃
l′≥lD(l′) .

These edges have length at most (1 + ε/
√

2)2−l+1. Any such edge crossing L1

must have both its end points within a distance of (1+ ε/
√

2)2−l+1 from L1. By
construction we ensure that this number is O(

√
nε−1). Therefore there exists a

set of O(
√
nε−1) vertices which when removed ensures that no edge of length

less than or equal (1 + ε/
√

2)2−l+1 crosses L1. So if l = 0 we are done.
We now consider edges attributed to vertices in

⋃
l′<lD(l′). Fix any level

l′ < l. From Lemma 4, and the remark above we know that the length of L1

is less than 2−l+3
√
nε. Consider four lines, two vertical lines drawn at distance

2−l′+2 on both sides of L1 and two horizontal lines drawn above and below L1

at a distance of 2−l′+2 from the end points. The rectangular region Rl′ formed
by these four lines has an area of at most 2−l′+3(2−l+3

√
nε+2−l′+3). Since each

node (square) in level l′ has an area of (ε2−l′)2 and at most one vertex from
each square can be in D(l′), we get that the number of vertices of D(l′) present
in this area is at most 2−l+l′+6

√
nε−1 + 128ε−2.

Each edge attributed to vertices in D(l′) and crossing L1 should have both
its end points in Rl′ . Summing over all l′ < l we get that the total number of
vertices in

⋃
l′<lD(l′) that could have edges crossing L1 is at most∑
0≤l′<l

(2l′−l+6
√
nε−1 + 128ε−2) = O(

√
nε−1 + ε−2l) .

Since there are only log ρ(D) levels in Γ , we can upper bound l by log ρ(D).
Therefore there exist O(

√
nε−1 + ε−2 log ρ(D)) vertices such that every edge

crossing L1 is incident on one of them. ❑

Final Shape of the Separator: We stop the algorithm when no rectangle is
still active. Among the rectangles formed by partitioning the last active rectan-
gle, the rectangle Rf with the largest number of disk centers forms one com-
ponent of the separator. Since the last active rectangle had at least 2/3 of the

184 M. Fürer and S.P. Kasiviswanathan

vertices of G′ and it gets divided into at most 3 rectangles, Rf contains at
least 2/9 of the vertices of G′. The vertices which are outside of Rf and are
connected to some vertices inside form the vertex separator. The proof of termi-
nation follows from Lemma 5, because when the algorithm considers level lmin,
the horizontal line separator divides the currently active rectangle into exactly
two non-active rectangles.

A naive implementation of this algorithm runs in O(n log n+n log ρ(D)) time.
This can be improved to O(n log n) using the data structures introduced in [10].
Again we have that,

Theorem 3. Let G be a disk graph on D and G′ be the cluster graph constructed
from G as described above. An O(

√
nε−1 +ε−2 log ρ(D))-separator decomposition

with 7/9-splits of G′ can be found in O(n log n) time.

Strong (1 + ε)-approximate answer to distance queries: Once we have
the separator in G′ the preprocessing and query procedure for estimating the
distance is the same as with unit disk graphs. The following theorem shows that
we get a strongly (1 + ε)-approximation.

Theorem 4. Let G be a disk graph on D with m = Ω(n logn) edges. The
graph G can be preprocessed in O(m

√
nε−1 + mε−2 log ρ(D)) time, producing

a data structure of size O(n3/2ε−1 + nε−2 log ρ(D)), such that subsequent dis-
tance queries can be answered approximately, in O(

√
nε−1 + ε−2 log ρ(D)) time.

The outputs produced are strong (1 + ε)-approximate distance estimates.

Proof. If there is an edge between u and v in G, then the actual distance is the
estimate. As in Theorem 2, consider a shortest path Ps = (u1, u2 . . . , uk) between
u1(= u) and uk(= v) with no edge shortcuts. Since there is always an edge if
the distance between two vertices is less than 2−lmin+1, we get d(uj−1, uj+1) ≥
2−lmin+1 and max{d(uj−1, uj), d(uj , uj+1)} ≥ 2−lmin for any j between 2 and
k − 1. Let (s(u1), s(u2), . . . , s(uk)) be the sequence of squares at the deepest
level in Γ such that s(ui) contains ui. Let t be the deepest node in TG′ with
Rs(u1), Rs(uk) ∈ V (t).

If any vertex Rs(ui) from {Rs(u1), . . . , Rs(uk)} is in the separator S(t), then
we do a single source shortest path from Rs(ui) on H(t). Now Rs(ui) is at most
ε2−lmin+1/2 distance away from ui and there exists an edge between Rs(ui) and
ui in G. This proves the estimate produced is only O(ε) greater than the shortest
path. The strong (1 + ε)-approximation follows as there is an edge in Ps which
is of length at least 2−lmin .

Otherwise, consider two vertices Rs(ua) and Rs(ub) from {Rs(u1), . . . , Rs(uk)}
which are separated into different components by S(t) and there exists an edge
(ua, ub) in G (by the assumption about the path Ps we get |a−b| = 1). Since there
is no edge between Rs(ua) and Rs(ub), we get that d(ua, ub) ≥ 2−lmin . Consider
the representative path P (ua, ub) in G′. There exists at least one vertex (say z)
on the path P (ua, ub) in the separator S(t). Let p and q be the two covering
nodes for P (ua, ub). By definition all the vertices in P (ua, ub) are contained in
either p or q. Assume w.l.o.g. that z and ua are contained in p.

Approximate Distance Queries in Disk Graphs 185

In G there exists edges (z,Rp) and (Rp, ua). Since z,Rp and ua are all
contained in p we get d(z,Rp), d(Rp, ua) ≤ ε2−dp+1/2. On the other hand,
dist(p, q) ≥ max{c12−dp , c12−dq} by Lemma 3. This also implies that d(ua, ub) ≥
c22−dp for some constant c2. Putting all together we get d(z,Rp) ≤ c3εd(ua, ub)
and d(Rp, ua) ≤ c3εd(ua, ub) for some constant c3, implying in G there is a path
from z to ua of length at most 2c3εd(ua, ub). Therefore when we do the single
source shortest path computation from z on H(t), the error we make in taking
the detour can be bounded by some constant times εd(ua, ub). Implying that our
estimate is a strong (1 + ε)-approximation.

The running time analysis follows as in Theorem 2. ❑

4.1 Extension to Higher Dimensions

In Rk, squares become k-dimensional hypercubes and the lines used in the separa-
tor algorithm become (k−1)-dimensional hyperplanes. Given a ball graphG in Rk,
the corresponding cluster graph G′ can be constructed in O(nε−k log ρ(D)) time.
Using the same algorithm for answering distance queries we have the following.

Theorem 5. Let G be a k-dimensional ball graph on D with m = Ω(n log n)
edges. The graph G can be preprocessed in O(mn1−1/k ε−k+1 + mε−k log ρ(D))
time, producing a data structure of size O(n2−1/k ε−k+1 + nε−k log ρ(D)), such
that subsequent distance queries can be answered approximately, in O(n1−1/k

ε−k+1 + ε−k log ρ(D)) time. The outputs produced are strong (1+ ε)-approximate
distance estimates.

5 Concluding Remarks

Our results are also applicable in the case where the disk graphs are directed (such
models are used in wireless networks to capture radio interferences [14]). All the
results presented in this paper can also be extended to cases when intersections
are between squares, or regular polygons, or other disk-like objects, as well as their
higher dimensional versions. This follows as our algorithms don’t use any special
properties of balls (or disks). However, the partitioning scheme only works if the
objects have almost the same aspect ratio.An open problem is to extend the results
to intersection graphs between objects not having this property.

References

1. Mead, C., Conway, L.: Introduction to VLSI System. Addison-Wesley, Reading
(1980)

2. Krumke, S.O., Marathe, M.V., Ravi, S.S.: Models and approximation algorithms
for channel assignment in radio networks. Wireless Networks 7(6) (2001) 575–584

3. Li, X.Y.: Algorithmic, geometric and graphs issues in wireless networks. Wireless
Communications and Mobile Computing 3(2) (2003) 119–140

4. Li, X.Y., Wan, P.J., Frieder, O.: Coverage in wireless ad hoc sensor networks.
IEEE Transactions on Computers 52(6) (2003) 753–763

186 M. Fürer and S.P. Kasiviswanathan

5. Srinivas, A., Modiano, E.: Minimum energy disjoint path routing in wireless ad-hoc
networks. In: MOBICOM ’03, ACM (2003) 122–133

6. Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph
metric and its applications. SIAM Journal on Computing 35(1) (2005) 151–169

7. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of ACM 52(1)
(2005) 1–24

8. Zwick, U.: Exact and approximate distances in graphs - A survey. In: ESA ’01.
Volume 2161., Springer (2001) 33–48

9. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to K-nearest-neighbors and N-body potential fields. Journal of
ACM 42(1) (1995) 67–90

10. Fürer, M., Kasiviswanathan, S.P.: Spanners for geometric intersection graphs.
Available at: http://www.cse.psu.edu/∼kasivisw/research.html (2006)

11. Miller, G.L., Teng, S.H., Vavasis, S.A.: A unified geometric approach to graph
separators. In: FOCS ’01, IEEE (1991) 538–547

12. Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.H.M., Zaroliagis, C.D.:
Planar spanners and approximate shortest path queries among obstacles in the
plane. In: ESA ’96. Volume 1136., Springer (1996) 514–528

13. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. SIAM Journal on Computing 17(6) (1988) 1253–1262

14. Balakrishnan, H., Barrett, C.L., Kumar, V.S.A., Marathe, M.V., Thite, S.: The
distance-2 matching problem and its relationship to the mac-layer capacity of ad
hoc wireless networks. IEEE Journal on Selected Areas in Communications 22
(2004) 1069–1079

Appendix A: Separators in Cluster Graph for the Unit
Disk Case

We describe the algorithm for the case when all the disks have the same radius.
It can easily be modified for the case where the disk radius differ only by a
constant factor.

Let X = {x1, x2, . . .} be the sorted list of x-coordinates of vertices in G′.
Similarly define Y for y-coordinates. Let xm denote the median of X . Starting
at xm we scan over the lower half list of X till we encounter the first xl, such
that xl − xl−√

nε−1 ≥ 2 +
√

2ε. Define a vertical line (L1) at x = xl. We add
all the vertices to the left of xl and crossing L1 into the separator. Similarly
starting from xm, we scan over the upper half list of X to find the first xr such
that xr+

√
nε−1 − xr ≥ 2 +

√
2ε. Define a vertical line (L2) at x = xr . Again we

add all the vertices to the right of xr crossing L2 into the separator. This entire
procedure can be done in linear time if the coordinates are sorted.

Final shape of the separator: Let Pb be the set of all vertices of G′ lying
between x = xl and x = xr . Let Yb be the sorted list of y-coordinates of vertices
in Pb. Let Pl be the set of vertices to the left of L1. Choose the element in Yb

with rank |Y|/2− |Pl|, say yd. Define the horizontal line segment (L3) at y = yd

with (xl, yd) and (xr, yd) as its endpoints. We add all the vertices crossing this
horizontal line segment into the separator. After removing the separator, the

Approximate Distance Queries in Disk Graphs 187

Fig. 3. The line segments L1, L2, and L3 are as defined by the algorithm. The shaded
region forms one separated component.

union of vertices in Pl and the vertices in Pb whose y-coordinates are less than
yd forms one component. See Figure 3.

Lemma 6. The number of vertices of G′ crossing the horizontal line segment
L3 is O(

√
nε−1).

Proof. Since the maximum edge length in G′ is 2+
√

2ε, from the construction
we know that there are at most

√
nε−1 vertices to the left of L1 crossing L1

and potentially L3 (similarly from the right of L2). Consider the vertical strip
between L1 and L2. By construction we also get that distance between L1 and
L2 is O(

√
nε) and hence the length of L3 is O(

√
nε). We now only consider the

area within the strip.
Define another horizontal line segment L4 at y = yd + 2 +

√
2ε with xl and

xr defining its endpoints (the case where L4 is defined as y = yd − 2 −
√

2ε is
symmetric). Consider the rectangular region formed by L1, L2, L3 and L4. Any
edge crossing the line segment L3 would have an endpoint in this rectangular
region. The area of this rectangular region is at most O(

√
nε). Since there is

only one vertex of G′ within each square of Roots, there exist at most O(
√
nε−1)

vertices within this rectangular region. Thus the total number of vertices of G′

crossing L3 is O(
√
nε−1). ❑

The 1/2-split is guaranteed by the construction. The running time for finding
the separator decomposition is dominated by the time for sorting.

Network Design with Edge-Connectivity

and Degree Constraints�

Takuro Fukunaga and Hiroshi Nagamochi

Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University, Japan

{takuro,nag}@amp.i.kyoto-u.ac.jp

Abstract. We consider the following network design problem; Given a
vertex set V with a metric cost c on V , an integer k ≥ 1, and a degree
specification b, find a minimum cost k-edge-connected multigraph on V
under the constraint that the degree of each vertex v ∈ V is equal to b(v).
This problem generalizes metric TSP. In this paper, we propose that the
problem admits a ρ-approximation algorithm if b(v) ≥ 2, v ∈ V , where
ρ = 2.5 if k is even, and ρ = 2.5 + 1.5/k if k is odd. We also prove
that the digraph version of this problem admits a 2.5-approximation
algorithm and discuss some generalization of metric TSP.

1 Introduction

It is a main concern in the field of network design to construct a graph of the
least cost which satisfies some connectivity requirement. Actually many results
on this topic have been obtained so far. In this paper, we consider a network
design problem that asks to find a minimum cost k-edge-connected multigraph
on a metric edge cost under degree specification. This provides a natural and
flexible framework for treating many network design problems. For example, it
generalizes the vehicle routing problem with m vehicles (m-VRP) [3,7], which
will be introduced below, and hence contains a well-known metric traveling sales-
person problem (TSP), which has already been applied to numerous practical
problems [8].

Let Z+ and Q+ denote the sets of non-negative integers and non-negative
rational numbers, respectively. Let G = (V,E) be a multigraph with a vertex set
V and an edge set E, where a multigraph may have some parallel edges but is
not allowed to have any loops. For two vertices u and v, an edge joining u and
v is denoted by uv. Since we consider multigraphs in this paper, we distinguish
two parallel edges e1 = uv and e2 = uv, which may be simply denoted by uv
and uv. For a non-empty vertex set X ⊂ V , d(X ; G) (or d(X)) denotes the
number of edges whose one end vertex is in X and the other is in V − X .
In particular d(v; G) (or d(v)) denotes the degree of vertex v in G. The edge-
connectivity λ(u, v; G) (or λ(u, v)) between u and v is the maximum number
� This research was partially supported by the Scientific Grant-in-Aid from Ministry

of Education, Culture, Sports, Science and Technology of Japan.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 188–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Network Design with Edge-Connectivity and Degree Constraints 189

s

Fig. 1. A solution for 4-VRP

of edge-disjoint paths between them in G. The edge-connectivity λ(G) of G is
defined as minu,v∈V λ(u, v; G). If λ(G) ≥ k for some k ∈ Z+, then G is called
k-edge-connected. For a function r :

(
V
2

)
→ Z+, G is called r-edge-connected if

λ(u, v; G) ≥ r(u, v) for every u, v ∈ V . Edge cost c :
(
V
2

)
→ Q+ is called metric if

it obeys the triangle inequality, i.e., c(uv)+ c(vw) ≥ c(uw) for every u, v, w ∈ V .
For a degree specification b : V → Z+, a multigraph G with d(v; G) = b(v) for

all v ∈ V is called a perfect b-matching. In this paper, we focus on the following
network design problem.

k-edge-connected multigraph with degree specification (k-ECMDS):
A vertex set V , a metric edge cost c :

(
V
2

)
→ Q+, a degree specification b : V →

Z+, and a positive integer k are given. We are asked to find a minimum cost
perfect b-matching G = (V,E) of edge-connectivity k. ��

In this paper, we suppose that b(v) ≥ 2 for all v ∈ V unless stated otherwise,
and propose approximation algorithms to k-ECMDS in this case.

Problem k-ECMDS is a generalization of m-VRP, which asks to find a mini-
mum cost set of m cycles, each containing a designated initial city s, such that
each of the other cities is covered by exactly one cycle (see Fig. 1). Observe that
this problem is 2-ECMDS where b(s) = 2m for the initial city s ∈ V and b(v) = 2
for every v ∈ V − s. If m = 1, then m-VRP is exactly TSP. Since TSP is known
to be NP-hard [11] even if a given cost is metric (metric TSP), k-ECMDS is
also NP-hard. If a given cost is not metric, TSP cannot be approximated unless
P = NP [11]. For m-VRP, there is a 2-approximation algorithm based on the
primal-dual method [7].

It is well studied to find a minimum cost multigraph either with k-edge-
connectivity or with degree specification. It is known that finding a minimum
cost k-edge-connected graph is NP-hard since it is equivalent to metric TSP
when k = 2 and a given edge cost is metric. On the other hand, it is known
that a minimum cost perfect b-matching can be constructed in polynomial time
(for example, see [10]). As a prior result on problems equipped with both edge-
connectivity requirements and degree constraints, Frank [1] showed that it is
polynomially solvable to find a minimum cost r-edge-connected multigraph G
with �(v) ≤ d(v; G) ≤ u(v), v ∈ V for degree lower and upper bounds �, u :
V → Z+ and a metric edge cost c such that c(uv) is defined by w(u) + w(v)
for some weight w : V → Q+ (in particular, c(uv) = 1 for every uv ∈

(
V
2

)
).

190 T. Fukunaga and H. Nagamochi

Recently Fukunaga and Nagamochi [4] presented approximation algorithms for a
network design problem with a general metric edge cost and some degree bounds;
For example, they presented a (2+1/�minu,v∈V r(u, v)/2�)-approximation algo-
rithm for constructing a minimum cost r-edge-connected multigraph that meets
a local-edge-connectivity requirement r with r(u, v) ≥ 2, u, v ∈ V under a uni-
form degree upper bound. Afterwards Fukunaga and Nagamochi [5] gave a 3-
approximation algorithm for the case where r(u, v) ∈ {1, 2} for every u, v ∈ V
and �(v) = u(v) for each v ∈ V . In this paper, we extend the 3-approximation
result [5] to k-ECMDS. Concretely, we prove that k-ECMDS is ρ-approximable
if b(v) ≥ 2, v ∈ V , where ρ = 2.5 if k is even and ρ = 2.5 + 1.5/k if k is odd. To
design our algorithms for k-ECMDS, we take a similar approach with famous 2-
and 1.5-approximation algorithms for metric TSP.

Furthermore, we also generalize k-ECMDS to a network design problem in
digraphs. We denote an arc (i.e., a directed edge) from a vertex u to another
vertex v by uv. Two arcs from u to v are called parallel. Let D = (V,A) be
a multi-digraph, where a multi-digraph may have some parallel arcs but is not
allowed to have any loops. For an ordered pair of vertices u and v, λ(u, v; D) (or
λ(u, v)) denotes the arc-connectivity from u to v, i.e., the maximum number of
arc-disjoint paths from u to v in D. The arc-connectivity λ(D) of D is defined as
minu,v∈V λ(u, v; D). If λ(D) ≥ k for some k ∈ Z+, D is called k-arc-connected.
Moreover, d−(v; D) (or d−(v)) and d+(v; D) (or d+(v)) denote in- and out-
degree of vertex v in digraph D, respectively. Arc cost c : V × V → Q+ is called
symmetric if c(uv) = c(vu) for every u, v ∈ V , and metric if it obeys the triangle
inequality, i.e., c(uv) + c(vz) ≥ c(uz) for every u, v, z ∈ V .

We call a multi-digraph D with d−(v; D) = b−(v) and d+(v; D) = b+(v)
for all v ∈ V perfect (b−, b+)-matching for in- and out-degree specifications
b−, b+ : V → Z+. A minimum cost perfect (b−, b+)-matching can be found by
computing a minimum cost perfect b-matching in a bipartite graph. The digraph
version of the problem is described as follows.

k-arc-connected multi-digraph with degree specification (k-ACMDS):
A vertex set V , a symmetric metric arc cost c : V × V → Q+, in- and out-degree
specifications b−, b+ : V → Z+, and a positive integer k are given. We are asked
to find a minimum cost perfect (b−, b+)-matching D = (V,A) of arc-connectivity
k. ��

This paper is organized as follows. Section 2 presents an algorithm for k-ECMDS.
Section 3 provides a 2.5-approximation algorithm for k-ACMDS problem.

2 Algorithm for k-ECMDS

This section describes an approximation algorithm for k-ECMDS. Before describ-
ing the algorithm, we consider how to check the feasibility of a given instance.

Network Design with Edge-Connectivity and Degree Constraints 191

For some degree specification b, there is no perfect b-matching. The following
theorem shows provides a necessary and sufficient condition for a degree speci-
fication to admit a perfect b-matching. Note that b(v) can be 1 in this theorem.

Theorem 1. Let V be a vertex set with |V | ≥ 2 and b : V → Z+ be a degree
specification. Then there exists a perfect b-matching if and only if

∑
v∈V b(v) is

even and b(v) ≤
∑

u∈V −v b(u) for each v ∈ V .

Proof. Omitted due to the space limitation. ��

Theorem 1 does not mention the edge-connectivity. For existence of connected
perfect b-matchings, we additionally need the condition that

∑
v∈V b(v) ≥ 2(|V |−

1) [5]. This is always satisfied if b(v) ≥ 2, v ∈ V , which we assume for 1-ECMDS.
For k ≥ 2, the conditions in Theorem 1 and b(v) ≥ k, v ∈ V are sufficient for the
existence of k-edge-connected perfect b-matchings as our algorithm will construct
such b-matchings under the conditions.

Now we describe our algorithm to k-ECMDS. Let (V, b, c, k) be an instance of
k-ECMDS. The conditions appeared in Theorem 1 and b(v) ≥ k for all v ∈ V can
be verified in polynomial time, where they are apparently necessary for an in-
stance to have k-edge-connected perfect b-matchings. Hence our algorithm checks
them, and if some of them are violated, it outputs message “INFEASIBLE”. In
the following, we suppose the existence of perfect b-matchings with b(v) ≥ k for
all v ∈ V . If 2 ≤ |V | ≤ 3, then every perfect b-matching is k-edge-connected
because any non-empty vertex set X ⊂ V is {v} or V − {v} for some v ∈ V ,
and then d(X) = d(v) ≥ k. Hence we can assume without loss of generality that
|V | ≥ 4.

For an edge set F on V , we denote graph (V, F) by GF . Let M be a minimum
cost edge set such that GM is a perfect b-matching. In addition, let H be an
edge set of a Hamiltonian cycle spanning V constructed by the 1.5-approximation
algorithm for TSP due to Christofides [11].

Initialization: After testing the feasibility of a given instance, our algorithm
first prepares M and k′ = �k/2� copies H1, . . . , Hk′ of H . Let E denote the
union M ∪H1 ∪ · · · ∪Hk′ of them. Notice that GE is 2k′-edge-connected by the
existence of edge-disjoint k′ Hamiltonian cycles. We call a vertex v in a handling
graph G an excess vertex if d(v; G) > b(v) (otherwise a non-excess vertex). In
GE , all vertices are excess vertices since d(v; GE) = b(v) + 2k′. In the following
steps, the algorithm reduces the degree of excess vertices until no excess vertex
exists while generating no loops and keeping k-edge-connectivity (Notice that
k < 2k′ if k is odd). This is achieved by two phases, Phase 1 and Phase 2, as
follows.

Phase 1: In this phase, we modify only edges in M while keeping edges in
H1, . . . , Hk′ unchanged. We define the following two operations on an excess
vertex v ∈ V .

Operation 1: If v has two incident edges xv and yv in M with x
= y, replace xv
and yv by new edge xy.

192 T. Fukunaga and H. Nagamochi

Operation 2: If v has two parallel edges uv in M with d(u) > b(u), remove those
edges.

Phase 1 repeats Operations 1 and 2 until none of them is executable. For avoiding
ambiguity, we let M ′ denote M after executing Phase 1, and M denote the
original set in what follows. Moreover, let E′ = M ′ ∪ H1 ∪ · · · ∪ Hk′ . Note
that d(v) − b(v) is always a non-negative even integer throughout (and after)
these operations because d(v; GE)− b(v) = 2k′ and each operation decreases the
degree of a vertex by 2. If no excess vertex remains in GE′ , then we are done.
We consider the case in which there remain some excess vertices, and show some
properties on M ′ before describing Phase 2.

Lemma 1. Every excess vertex in GE′ has at least one incident edge in M ′ and
its neighbors in GM ′ are unique.

Proof. Since d(v; GE′)− b(v) is a positive even integer for an excess vertex v in
GE′ , it holds d(v; GM ′) = d(v; GE′) − d(v; GH1∪···∪Hk′) ≥ (b(v) + 2) − 2k′ > 0,
Hence v has at least one incident edges in M ′. If neighbors of v in GM ′ are not
unique, Operation 1 can be applied to v. ��

For an excess vertex v in GE′ , let n(v) denote the unique neighbor of v in GM ′ .
If n(v) is also an excess vertex in GE′ , we call the pair {v, n(v)} by a strict pair.

Lemma 2. Let {v, n(v)} be a strict pair. Then d(v; GM ′) = d(n(v); GM ′) = 1,
k is odd, and b(v) = b(n(v)) = k.

Proof. By Lemma 1, d(v; GM ′) = d(n(v); GM ′). If d(v; GM ′) = d(n(v); GM ′) >
1, Operation 2 can be applied to v and n(v), a contradiction. Hence d(v; GM ′) =
d(n(v); GM ′) = 1 holds. Let u ∈ {v, n(v)}. Then it holds that d(u; GE′) =
d(u; GH1∪···∪Hk′) + d(u; GM ′) = 2k′ + 1 = 2�k/2� + 1. Since d(u; GE′) − b(u)
is even, b(u) must be odd. This fact and d(u,GE′) > b(u) ≥ k indicates that
b(u) = k and k is odd. ��

By definition, the existence of excess vertices which are in no strict pairs indicate
that of some non-excess vertices. Upon completion of Phase 1, let N denote the
set of non-excess vertices in GE′ , and S denote the set of strict pairs in GE′ .
If N = ∅, all excess vertices are in some strict pairs. By Lemma 2, k is an odd
integer in this case, and furthermore k ≥ 3 by the assumption that b(v) ≥ 2,
v ∈ V if k = 1. From this fact and |V | ≥ 4, N = ∅ implies that at least two
strict pairs exist (i.e., |S| ≥ 2).

Phase 2: Now we describe Phase 2. First, we deal with a special case in which
V consists of only two strict pairs.

Lemma 3. If V consists of two strict pairs after Phase 1, we can transform
GE′ into a k-edge-connected perfect b-matching without increasing the cost.

Proof. Let V = {u, v, w, z} and H = {uv, vw,wz, zu}. Now E′ = M ′ ∪ H1 ∪
· · · ∪Hk′ (k ≥ 2). Then either M ′ = {uv, wz} (or {vw, zu}) or M ′ = {uw, vz}

Network Design with Edge-Connectivity and Degree Constraints 193

holds. In both cases, we replace M ′ ∪H1 ∪H2 by E′′ = {uv, vw,wz, zu, uw, vz}
(see Fig. 2). Then, we can see that d(v; GE′′) = 3 for all v ∈ V and GE′′ is
3-edge-connected. Since d(v; GHi) = 2 for v ∈ V, i = 3, . . . , k′ and GHi is 2-edge-
connected for i = 3, . . . , k′, it holds that d(v; GE′′∪H3∪···∪Hk′) = 3 + 2(k′ − 2) =
k = b(v) for v ∈ V and the edge-connectivity of GE′′∪H3∪···∪Hk′ is 3+2(k′−2) = k
(The existence of strict pair implies that k is odd by Lemma 2.).

Hence it suffices to show that c(E′′) ≤ c(M ′)+c(H1)+c(H2). IfM ′ = {uw, vz}
(or {vw, zu}), then it is obvious since E′′ = M ′ ∪ H1 ⊆ M ′ ∪ H1 ∪ H2. Let
us consider the other case, i.e., M ′ = {uv, wz}. From M ′ ∪ H1 ∪ H2, remove
{uv, uv}, replace {wz, zu} by {wu}, and replace {vw,wz} by {vz}. Then the
edge set becomes E′′ without increasing edge cost, as required. ��

In the following, we assume that |S| ≥ 3 when N = ∅. In this case, Phase 2
modifies only edges in Hi, i = 1, . . . , k′ while keeping the edges in M ′ unchanged.
Let V (Hi) denote the set of vertices spanned by Hi. We define detaching v from
cycle Hi to be an operation that replaces the pair {uv, vw} ⊆ Hi of edges incident
to v by a new edge uw. Note that this decreases d(v) by 2, butHi remains a cycle
on V (Hi) := V (Hi)−{v}. For each excess vertex v in GE′ , Phase 2 reduces d(v)
to b(v) by detaching v from (d(v; GE′)−b(v))/2 cycles in H1, . . . , Hk′ . We notice
that (d(v; GE′)− b(v))/2 ≤ k′ by d(v; GE′)− b(v) ≤ d(v; GE)− b(v) = 2k′. One
important point is to keep |V (Hi)| ≥ 2 for each i = 1, . . . , k′ during Phase 2. In
other words, we always select Hi with |V (Hi)| ≥ 3 to detach an excess vertex.
This is necessary because, if we detach a vertex from Hi with V (Hi) = 2, then
Hi becomes a loop. In addition, we detach the two excess vertices u and v in a
strict pair from different cycles in H1, . . . , Hk′ , respectively. This is in order to
maintain the k-edge-connectivity of GE′ as will be explained below.

u uu

v vv w ww

z zz

M ′M ′ M ′M ′

M ′M ′

H1 H1 H1

H2 H2

GE′′

Fig. 2. Operations when V consists of two strict pairs

Lemma 4. It is possible to decrease the degree of each excess vertex v in GE′

to b(v) by detaching from some cycles in H1, . . . , Hk′ so that |V (Hi)| remains
at least 2 for i = 1, . . . , k′ and the two excess vertices in each strict pair are
detached from Hi and Hj with i
= j, respectively.

Proof. First, let us consider the case of S
= ∅. Recall k ≥ 3 and k′ = �k/2� ≥ 2 in
this case. For each strict pair {u, v} ∈ S, we detach u and v from different cycles
in H1, . . . , Hk′ . On the other hand, we detach excess vertex z from arbitrary
(d(z; GE′)− b(z))/2 cycles. After this, each of H1, . . . , Hk′ is incident to at least

194 T. Fukunaga and H. Nagamochi

one vertex of any strict pair in S in addition to all non-excess vertices in N .
By the relation between |S| and |N | we explained in the above, it holds that
|V (Hi)| ≥ |S|+ |N | ≥ 2 for each i = 1, . . . , k′, as required.

Next, let us consider the case of S = ∅. As explained in the above, |N | ≥ 1 holds
for this case. If |N | ≥ 2, the claim is obvious since each of H1, . . . , Hk′ is always
incident to all vertices in N . Hence suppose that |N | = 1, and let x be the unique
non-excess vertex in N . Then all edges in M ′ are incident to x, since otherwise
S = ∅ implies that Operation 1 or 2 would be applicable to some vertex in V − x.
In other words, b(x) = d(x; GE′) = |M ′| + 2k′ holds before Phase 2. Moreover∑

v∈V −x b(v) ≥ b(x) also holds by the assumption that perfect b-matchings exist.
Now assume that we have converted some excess vertices in GE′ into non-excess
vertices by detaching them from some of H1, . . . , Hk′ while keeping |V (Hi)| ≥ 2,
i = 1, . . . , k′, and yet an excess vertex y ∈ V − x remains. Hence

∑
v∈V d(v) >∑

v∈V b(v). Then there remains a cycle Hi with |V (Hi)| > 2 because

2
∑

1≤i≤k′
|V (Hi)| =

∑
v∈V

d(v; GH1∪···∪Hk′) =
∑
v∈V

d(v)− 2|M ′|

>
∑

v∈V −{x}
b(v)+b(x)−2|M ′| ≥ 2(b(x)−|M ′|) ≥ 4k′. ��

In the following, we let H ′
i denote Hi after Phase 2, and Hi denote the original

Hamiltonian cycle for i = 1, . . . , k′. Moreover let E′′ = M ′ ∪H ′
1 ∪ · · · ∪H ′

k′ . The
algorithm outputs GE′′ . The entire algorithm is described as follows.

Algorithm UNDIRECT(k)
Input: A vertex set V , a degree specification b : V → Z+, a metric edge cost

c : V → Q+, and a positive integer k
Output: A k-edge-connected perfect b-matching or “INFEASIBLE”

1: if
∑

v∈V b(v) is odd, ∃v : b(v) >
∑

u∈V −v b(u) or k > b(v) then
2: Output “INFEASIBLE” and halt
3: end if;
4: Compute a minimum cost perfect b-matching GM ;
5: if |V | ≤ 3 then
6: Output GM and halt
7: end if;
8: Compute a Hamiltonian cycle GH on V by Christofides’ algorithm;
9: k′ := �k/2�; Let H1, . . . , Hk′ be k′ copies of H ;

Phase 1
10: M ′ := M ;
11: while Operation 1 or 2 is applicable to a vertex v ∈ V

with d(v; GM ′∪H1∪···∪Hk′) > b(v) do
12: if ∃{xv, vy} ⊆M ′ such that x
= y then
13: M ′ := (M ′ − {xv, vy}) ∪ {xy} # Operation 1
14: else

Network Design with Edge-Connectivity and Degree Constraints 195

15: if ∃{xv, vx} ⊆M ′ such that d(x; GM ′∪H1∪···∪Hk′) > b(x) then
16: M ′ := M ′ − {xv, vx} # Operation 2
17: end if
18: end if
19: end while;

Phase 2
20: if V consists of two strict pairs then
21: Rename vertices so that H = {uv, vw,wz, zu};
22: H ′

2 := ∅; M ′ := {uw, vz};
23: Output GM ′∪H′

1∪···∪H′
k′ and halt

24: end if;
25: H ′

i := Hi for each i = 1, . . . , k′;
26: while ∃v ∈ V with d(v; GM ′∪H′

1∪···∪H′
k′) > b(v) do

27: if v and n(v) forms a strict pair then
28: Detach v from H ′

i and n(v) from H ′
j , where i
= j

29: else
30: Detach v from H ′

i with V (H ′
i) > 2

31: end if
32: end while;
33: E′′ := M ′ ∪H ′

1 ∪ · · · ∪H ′
k′ ;

34: Output GE′′

Lemma 5. GE′′ is a k-edge-connected perfect b-matching.

Proof. We have already seen the case in which V consists of two strict pairs.
Hence we suppose the other case in the following. Moreover we have already
observed that d(v; GE′′) = b(v) holds for each v ∈ V . Furthermore GE′′ is
loopless since GE is loopless and no operations in the algorithm generate loops.
Hence we prove the k-edge-connectivity of GE′′ below.

Let u, v ∈ V . (i) First suppose that u and v are in some (possibly different)
strict pairs in GE′ . Moreover, let u
∈ V (H ′

i) and v
∈ V (H ′
j) (hence u ∈ V (H ′

i′)
for i′
= i and v ∈ V (H ′

j′) for j′
= j). For each � ∈ {1, . . . , k′} − {i, j},
λ(u, v; GH′

�
) = 2 holds because u, v ∈ V (H ′

�). If i = j, λ(u, v; GH′
i∪M ′) = 1

holds because d(u; GM ′) = d(v; GM ′) = 1 and n(u), n(v) ∈ V (H ′
i). Then it holds

that λ(u, v; GE′′) = 2(k′ − 1) + 1 = k in this case (Recall that the existence of
strict pairs implies that k is odd by Lemma 2). Hence we let i
= j, and show that
λ(u, v; GH′

i∪H′
j∪M ′) ≥ 3 from now on, from which λ(u, v; GE′′) ≥ 2(k′−2)+3 = k

can be derived.
Let N and S denote the sets of non-excess vertices and strict pairs in GE′

after Phase 1, respectively. Suppose that V (H ′
i)∩V (H ′

j) = ∅. In this case, it can
be seen that N = ∅, and hence |S| ≥ 3 by the assumption about the relation
between N and S. Since at least one vertex of each strict pair is spanned by each
cycle in H ′

1, . . . , H
′
k′ , we can see that M ′ contains at least three vertex-disjoint

edges that join vertices in V (H ′
i) and in V (H ′

j), two of which are u and v. This
indicates that λ(u, v; GH′

i∪H′
j∪M ′) ≥ 3 holds (see the graph of Fig. 3 (b)).

196 T. Fukunaga and H. Nagamochi

Let us consider the case of V (H ′
i)∩V (H ′

j)
= ∅ in the next. By the existence of u
and v, |S| ≥ 1 holds. If u and v forms a strict pair (i.e., uv ∈M ′), λ(u, v; GM ′) =
1 holds. Since V (H ′

i) ∩ V (H ′
j)
= ∅ implies λ(GH′

i∪H′
j
) ≥ 2, we see that λ(u, v;

GH′
i∪H′

j∪M ′) ≥ 3 in this case. Thus let u and v belong to different strict pairs (i.e.,
|S| ≥ 2). Then there exists two vertex-disjoint edges inM ′ joins vertices in V (H ′

i)
and in V (H ′

j) (see Fig. 3 (a)). If we split each vertex w ∈ V (H ′
i)∩V (H ′

j) into two
vertices w′ and w′′ so that H ′

i and H ′
j are vertex-disjoint cycles, and add new

edges w′w′′ joining those two split vertices to M ′, then we can reduce this case to
the case of V (H ′

i)∩V (H ′
j) = ∅, in which λ(u, v; GH′

i∪H′
j∪M ′) ≥ 3 has already been

observed in the above (see Fig. 3). Accordingly, we have λ(u, v; GH′
i∪H′

j∪M ′) ≥ 3
if u and v are in some strict pairs, as required.

H ′
j

H ′
j

H ′
i H ′

iu u

v vw w′

w′′

(a) (b)

Fig. 3. Reduction to the case of V (H ′
i) ∩ V (H ′

j) = ∅

(ii) In the next, let u and v be not in any strict pairs. For z ∈ {u, v}, let
n′(z) denote z itself if z ∈ N , and n(z) otherwise. Notice that n′(z) ∈ N for any
z ∈ {u, v}, i.e., it is spanned byH ′

1, . . . , H
′
k′ . If z ∈ {u, v} is not spanned by p > 0

cycles in H ′
1, . . . , H

′
k′ (and hence z is an excess vertex in GE′), then z has at least

k−2(k′−p) incident edges in M ′ because d(z; GM ′) = b(z)−d(z; GH′
1∪···∪H′

k′) ≥
k − 2(k′ − p). Hence λ(z, n′(z); GE′′) ≥ 2(k′ − p) + k − 2(k′ − p) = k holds for
each z ∈ {u, v}, where we define λ(z, z; GE′′) = +∞. Moreover it is obvious that
λ(n′(u), n′(v); GE′′) ≥ 2k′. Therefore, it holds that

λ(u, v; GE′′)≥min{λ(u, n′(u); GE′′), λ(n′(u), n′(v); GE′′), λ(n′(v), v; GE′′)} ≥ k.

(iii) Finally, let us consider the remaining case, i.e., u is in a strict pair and v is
a vertex which is not in any strict pair. Let us define n′(v) as in the above. Then
λ(v, n′(v); GE′′) ≥ k holds. Without loss of generality, let u be detached from
H ′

1, and spanned by H ′
2, . . . , H

′
k′ . Since un(u) ∈M ′ and n(u), n′(v) ∈ V (H ′

1), it
holds that λ(u, n(u); GM ′∪H′

1
) = 1, and λ(n(u), n′(v); GM ′∪H′

1
) ≥ 2. Then,

λ(u, n′(v); GE′′) ≥ min{λ(u, n(u); GM ′∪H′
1
), λ(n(u), n′(v); GM ′∪H′

1
)}

+ λ(u, n′(v); GH′
2∪···∪H′

k′) ≥ 1 + 2(k′ − 1) = 2k′ − 1 = k.

Network Design with Edge-Connectivity and Degree Constraints 197

Therefore,

λ(u, v; GE′′) ≥ min{λ(u, n′(v); GE′′), λ(v, n′(v); GE′′)} ≥ k,

holds, as required. ��

Let us consider the cost of the graph GE′′ . The following theorem on the Chri-
stofides’ algorithm gives us an upper bound on c(H). Here, we let δ(U) denote
the set of edges whose one end vertex is in U and the other is in V − U for
nonempty U ⊂ V .

Theorem 2 ([6,12]). Let

OPTTSP = min
∑

e∈E c(e)x(e)
subject to

∑
e∈δ(U) x(e) ≥ 2 for each nonempty U ⊂ V ,

x(e) ≥ 0 for each e ∈ E.

Christofides’ algorithm for TSP outputs a solution of cost at most 1.5OPTTSP .
��

Lemma 6. c(E′′) is at most 1 + 3�k/2�/k times the optimal cost of k-ECMDS.

Proof. No operation in Phases 1 and 2 increases the cost of the graph since the
edge cost is metric. Hence it suffices to show that c(M ∪ H1 ∪ · · · ∪Hk′) is at
most (1 + 3�k/2�/k) · c(G), where G denotes an optimal solution of k-ECMDS.
Since G is a perfect b-matching, c(M) ≤ c(G) obviously holds. Thus it suffices
to show that c(Hi) ≤ 3c(G)/k for 1 ≤ i ≤ k′, from which the claim follows.

Let xG :
(
V
2

)
→ Z+ be the function such that xG(uv) denotes the number of

edges joining u and v in G. Since G is k-edge-connected,
∑

e∈δ(U) xG(e) ≥ k holds
for every nonempty U ⊂ V . Hence 2xG/k is feasible for the linear programming
in Theorem 2, which means that OPTTSP ≤ 2c(G)/k. By Theorem 2, c(Hi) ≤
1.5OPTTSP . Therefore we have c(Hi) ≤ 3c(G)/k, as required. ��

Lemmas 5 and 6 establish the next.

Theorem 3. Algorithm UNDIRECT(k) is a ρ-approximation algorithm for k-
ECMDS, where ρ = 2.5 if k is even and ρ = 2.5 + 1.5/k if k is odd. ��

Algorithm UNDIRECT(k) always outputs a solution for k ≥ 2 as long as there
exists a perfect b-matching and b(v) ≥ k for all v ∈ V . This fact and Theorem 1
imply the following corollary.

Corollary 1. For k ≥ 2, there exists a k-edge-connected perfect b-matching if
and only if

∑
v∈V b(v) is even and k ≤ b(v) ≤

∑
u∈V −v b(u) for all v ∈ V . ��

We close this section with a few remarks. The operations in Phases 1 and 2
are equivalent to a graph transformation called splitting, followed by removing
generated loops if any. There are many results on the conditions for splitting to
maintain the edge-connectivity [2,9]. However, the splittings in these results may

198 T. Fukunaga and H. Nagamochi

generate loops. Hence algorithm UNDIRECT(k) needs to specify a sequence of
splitting so that removing loops does not make the degrees lower than the degree
specification.

One may consider that a perfect (b− 2k′)-matching is more appropriate than
a perfect b-matching as a building block of our algorithm, since there is no excess
vertex for the union of a perfect (b − 2k′)-matching and k′ Hamiltonian cycles.
However, there is a degree specification b that admits a perfect b-matching,
and no perfect (b − 2k′)-matching. Furthermore, even if there exits a perfect
(b− 2k′)-matching, the minimum cost of the perfect (b− 2k′)-matching may not
be a lower bound on the optimal cost of k-ECMDS. Therefore we do not use a
perfect (b − 2k′)-matching in general case. When b(v) = � for all v ∈ V with
some integer � ≥ k, we can show that a perfect (b− 2k′)-matching exist and its
cost can be estimated although we do not present the detail due to the space
limitation. By exploiting this fact, the approximation factor for k-ECMDS can
be improved to �−k

� + 1.5 in this case.

3 Algorithm for k-ACMDS

This section shows that k-ACMDS is 2.5-approximable. The algorithm for k-
ACMDS can be designed analogously with that for k-ECMDS. Before describing
the algorithm, we consider the feasibility of k-ACMDS.

A problem to find a minimum cost perfect (b−, b+)-matching in a digraph can
be reduced to find a minimum cost perfect b-matching in an undirected bipartite
graph. From this reduction and Frobenius’ classic theorem on the relation-ship
between vertex covers and matchings in an undirected bipartite graph (see [10]
for example), we can immediately derive a condition for a digraph to have a
perfect (b−, b+)-matching.

Theorem 4. Let V be a vertex set, and b−, b+ : V → Z+ be in- and out- degree
specifications, respectively. There exists a perfect (b−, b+)-matching if and only
if
∑

v∈V b
−(v) =

∑
v∈V b

+(v), b−(v) ≤
∑

u∈V −v b
+(u) for each v ∈ V , and

b+(v) ≤
∑

u∈V −v b
−(u) for each v ∈ V .

Proof. Omitted due to the space limitation. ��

We are ready to explain the algorithm for k-ACMDS. In the following, we assume
that b−(v), b+(v) ≥ k for each v ∈ V and a perfect (b−, b+)-matching exists.

Let M be a minimum cost perfect (b−, b+)-matching and H be a directed
Hamiltonian cycle constructed by Christofides’ algorithm for the edge cost ob-
tained from c by ignoring the direction of arcs (Recall that c is symmetric).
Moreover let H1, . . . , Hk be k copies of H , A = M ∪ H1 ∪ · · · ∪ Hk, and DF

denote the digraph (V, F) for an arc set F . A vertex v ∈ V is called an excess
vertex if d−(v) > b−(v) or d+(v) > b+(v) (otherwise v is called a non-excess
vertex). Notice that d−(v; DA) − b−(v) = d+(v; DA) − b+(v). This condition
is maintained throughout the algorithm, i.e., d−(v) > b−(v) is equivalent to
d+(v) > b+(v). Our algorithm for k-ACMDS decreases the degree of excess ver-
tices as k-ECMDS. One difference between algorithms for k-ECMDS and for

Network Design with Edge-Connectivity and Degree Constraints 199

k-ACMDS is the definition of Operations 1 and 2. These will be executed for a
pair of arcs entering and leaving the same vertex as follows.

Operation 1: If an excess vertex v has two incident arcs xv and vy in M with
x
= y, replace xv and vy by new edge xy ∈M .

Operation 2: If an excess vertex v has two arcs uv and vu in M with d−(u) >
b−(u) (and d+(v) > b+(v)), remove these arcs.

Phase 1 of our algorithm modifies edges in M by repeating Operations 1 and
2 until none of them is executable. We let M ′ denote M after Phase 1, and M
denote the original set in the following. Moreover let A′ = M ′∪H1∪· · ·∪Hk, and
N denote the set of non-excess vertices in DA′ . Note that the number of arcs in
M ′ entering (resp., leaving) each excess vertices v in DA′ has d−(v; DA′)− k ≥
d−(v; DA′) − b−(v) (resp., d−(v; DA′) − b−(v) > d+(v; DA′) − b+(v)) arcs. The
other end vertex of them is unique and in N (i.e., a non-excess vertex in DA′)
since otherwise Operation 1 or 2 can be applied to v. This situation is simpler
than after Phase 2 of UNDIRECT(k) since no correspondence of strict pairs
exists. Notice that N
= ∅ always holds here.

Phase 2 of our algorithm for k-ACMDS modifies edges in H1, . . . , Hk so as
to decrease the degrees of all excess vertices as in UNDIRECT(k). We repeat
detaching each excess vertex from some of H1, . . . , Hk, where detaching a vertex
v from Hi is defined as an operation that replaces the pair {uv, vw} ⊆ Hi of arcs
entering and leaving v by new arc uw. We can prove that it is possible to detach
excess vertices from Hamiltonian cycles while keeping V (Hi) ≥ 2 for 1 ≤ i ≤ k
as in UNDIRECT(k).

Lemma 7. It is possible to decrease the degree of each excess vertex v to b(v)
by detaching v from some cycles in H1, . . . , Hk so that |V (Hi)| remains at least
two for all i = 1, . . . , k.

Proof. Recall that N
= ∅. If |N | ≥ 2, the claim is obvious since each of
H1, · · · , Hk is incident to all vertices in N . Hence suppose that |N | = 1, and let
x be the unique vertex in N . Then all arcs in M ′ are incident to x since oth-
erwise Operation 1 or 2 would be applicable to some vertex in V − x. In other
words, it hold |M ′| = d−(x; DM ′) + d+(v; DM ′) = b−(x) + b+(x) − 2k. Recall
that

∑
v∈V −x b

+(v) ≥ b−(x) and
∑

v∈V −x b
−(v) ≥ b+(x) hold by the assumption

that perfect (b−, b+)-matchings exist. Now assume that we have converted some
excess vertices in DA′ into non-excess vertices by detaching them from some of
H1, . . . , Hk while keeping |V (Hi)| ≥ 2, i = 1, . . . , k, and yet an excess vertex
y ∈ V − x remains. Then there remains a cycles Hi with |V (Hi)| > 2 because∑

1≤i≤k

|V (Hi)| =
∑
v∈V

d−(v; DH1∪···∪Hk
) =
∑
v∈V

d−(v; DE′)− |M ′|

>
∑

v∈V −{x}
b−(v) + d−(x; DE′)− |M ′| ≥ b+(x) + b−(x) − |M ′| ≥ 2k.

Hence we can detach y from such Hi, implying the claim also for |N | = 1. ��

200 T. Fukunaga and H. Nagamochi

In the following, we let H ′
i denote Hi after Phase 2, and Hi denote the original

Hamiltonian cycle for i = 1, . . . , k in order to avoid the ambiguity. Moreover let
A′′ = M ′ ∪H ′

1 ∪ · · · ∪H ′
k. Our algorithm outputs DA′′ as a solution.

Algorithm DIRECT(k)
Input: A vertex set V , in- and out-degree specification b−, b+ : V → Z+, a

symmetric metric arc cost c : V × V → Q+, and a positive integer k
Output: A k-arc-connected perfect (b−, b+)-matching or “INFEASIBLE”

1: if
∑

v∈V b
−(v)
=

∑
v∈V b

+(v), ∃v : b−(v) >
∑

u∈V −v b
+(u), ∃v : b+(v) >∑

u∈V −v b
−(u), ∃v : k > b−(v), or ∃v : k > b+(v) then

2: Output “INFEASIBLE” and halt
3: end if;
4: Compute a minimum cost perfect (b−, b+)-matching DM ;
5: Compute a Hamiltonian cycle DH on V by Christofides’ algorithm; Let
H1, . . . , Hk be k copies of H ;

Phase 1
6: M ′ := M ;
7: while Operation 1 or 2 is applicable to a vertex v ∈ V

with d−(v; DM ′∪H1∪···∪Hk
) > b−(v) do

8: if ∃{xv, vy} ⊆M ′ such that x
= y then
9: M ′ := (M ′ − {xv, vy}) ∪ {xy} # Operation 1

10: else if ∃{xv, vx} ⊆M ′ such that d−(x; DM ′∪H1∪···∪Hk
) > b−(x) then

11: M ′ := M ′ − {xv, vx} # Operation 2
12: end if
13: end while;

Phase 2
14: H ′

i := Hi for each i = 1, . . . , k;
15: while ∃v ∈ V with d−(v; DM ′∪H′

1∪···∪H′
k
) > b−(v) do

16: Detach v from H ′
i with V (H ′

i) > 2
17: end while;
18: A′′ := M ′ ∪H ′

1 ∪ · · · ∪H ′
k;

19: Output DA′′

Let OPT denote the optimal cost of k-ACMDS. We can show that DA′′ is
k-arc-connected, c(M) ≤ OPT and c(Hi) ≤ 1.5OPT/k for 1 ≤ i ≤ k, similarly
for UNDIRECT(k) although we leave the proof to the readers. As a conclusion,
we have the following theorem.

Theorem 5. Algorithm DIRECT(k) is a 2.5-approximation algorithm for k-
ACMDS. ��

Algorithm DIRECT(k) always outputs a solution when there exists a perfect
(b−, b+)-matching and b−(v) ≥ k, b+(v) ≥ k for all v ∈ V . This fact and Theo-
rem 4 implies the following corollary.

Network Design with Edge-Connectivity and Degree Constraints 201

Corollary 2. For k ≥ 1, there exists a k-arc-connected perfect (b−, b+)-matching
if and only if

∑
v∈V b

−(v) =
∑

v∈V b
+(v), k ≤ b−(v) ≤

∑
u∈V −v b

+(u) for each
v ∈ V , and k ≤ b+(v) ≤

∑
u∈V −v b

−(u) for each v ∈ V . ��

References

1. A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM Jour-
nal on Discrete Mathematics 5 (1992) 25–53.

2. A. Frank, On a theorem of Mader, Discrete Mathematics 191 (1992) 49–57.
3. G. N. Frederickson, M. S. Hecht, C. E. Kim, Approximation algorithms for some

routing problems, SIAM Journal of Computing 7 (1978) 178–193.
4. T. Fukunaga, H. Nagamochi, Approximating minimum cost multigraphs of spec-

ified edge-connectivity under degree bounds, Proceedings of the 9th Japan-Korea
Joint Workshop on Algorithm and Computation (2006) 25-32.

5. T. Fukunaga, H. Nagamochi, Approximating a generalization of metric TSP, IEICE
Transactions on Information and Systems, to appear.

6. M. X. Goemans, D. J. Bertsimas, Survivable networks, linear programming re-
laxations and the parsimonious property, Mathematical Programming 60 (1993)
145–166.

7. M. X. Goemans, D. P. Williamson, The primal-dual method for approximation
algorithms and its application to network design problems, PWS, 1997, Ch. 4, pp.
144–191.

8. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys (Eds.), The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, John
Wiley & Sons, 1985.

9. W. Mader, A reduction method for edge-connectivity in graphs, Annals of Discrete
Mathematics 3 (1978) 145–164.

10. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer,
2003.

11. V. Vazirani, Approximation Algorithm, Springer, 2001.
12. L. A. Wolsey, Heuristic analysis, linear programming and branch and bound, Math-

ematical Programming Study 13 (1980) 121–134.

Approximating Maximum Cut with Limited

Unbalance

Giulia Galbiati1 and Francesco Maffioli2

1 Dipartimento di Informatica e Sistemistica, University of Pavia (Italy)
giulia.galbiati@unipv.it

2 Dipartimento di Elettronica e Informazione, Politecnico di Milano (Italy)
maffioli@elet.polimi.it

Abstract. We present polynomial time randomized approximation al-
gorithms with non trivial performance guarantees for the problem of
partitioning the vertices of a weighted graph into two sets of sizes that
differ at most by a given threshold B, so as to maximize the weight of
the crossing edges. For B equal to 0 this problem is known as Max Bisec-
tion, whereas for B equal to the number n of nodes it is the Maximum
Cut problem. The approximation results are obtained by extending the
methodology used by Y. Ye for Max Bisection and by combining this
technique with another one that uses the algorithm of Goemans and
Williamson for the Maximum Cut problem. When B is equal to zero the
approximation ratio achieved coincides with the one obtained by Y. Ye;
otherwise it is always above this value and tends to the value obtained
by Goemans and Williamson as B approaches the number n of nodes.

Keywords: randomized algorithm, approximation algorithm, semidefi-
nite programming.

1 Introduction

Problems addressing optimum cuts are often considered in theoretical computer
science and in combinatorial opimization; recently unbalanced graph cuts have
received attention [8]. Here we address the following problem: given an undi-
rected graph G = (V,E), with vertex set V of cardinality n and edge set E,
where each edge (i, j) has a non-negative weight wij , and given a constant B,
0 ≤ B < n, find a cut (S, V \ S) of G of maximum weight such that the differ-
ence between the cardinalities of the two shores of the cut is not greater than
B. We refer to this problem with the name Maximum Cut with Limited Un-
balance (MaxCUT-LU for short). When B is equal to zero it is known as the
Max Bisection problem and the algorithm in [14] gives an approximation ratio
equal to 0.699. When B is equal to n − 1 it is the well-known Maximum Cut
problem and the famous algorithm of [7] gives an approximation ratio equal to
0.87856. It is also a classic result of Trevisan et al. [12] and H̊astad [9] that the
Maximum Cut problem cannot be approximated by a deterministic algorithm
having an approximation ratio strictly exceeding 16/17, unless P=NP. For a

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 202–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximating Maximum Cut with Limited Unbalance 203

specific class of graphs an approximation ratio strictly exceeding 16/17 has been
recently obtained in [10].

In [11] several applications of Maximum Cut are reported in different fields
such as network planning, circuit design, scheduling, cryptanalysis, logic, psy-
chology. For most of them the generalization to MaxCUT-LU makes sense. For
instance, in circuit design, the problem of dividing the vertex set of the graph
underlined by the circuit into two parts of equal cardinalities is of interest, and
relaxing the equal cardinality constraint to that of limited unbalance can allow
to get better results as far as approximating the optimum weight of the cut ob-
tained, without affecting the suitability of the partition from the point of view
of the circuit designer. MaxCUT-LU might also make sense for balancing signed
graphs when special constraints arise, with applications e.g. in psychology [2].
The strict relation between Maximum Cut and Maximum 2-Satisfiability prob-
lems is well known [7]. Here the extension to MaxCUT-LU can allow to consider
constraints on the number of variables set to “true”.

In this paper we present polynomial time randomized approximation algo-
rithms with non-trivial performance guarantees for MaxCUT-LU. Our results
are obtained by extending to this problem the methodology used in [14] for Max
Bisection and by combining this technique with another one that uses the algo-
rithm of [7]. When B is equal to zero the approximation ratio achieved coincides
with the one of [14], which is equal to 0.699; otherwise it is always greater than
this value, and tends to the 0.87856 value of the algorithm of [7] when B ap-
proaches the number n of nodes. Our main results are summarized in Theorem
3, Proposition 1 and Theorem 4. Both Theorem 3 and Theorem 4 give com-
pact and precise expressions for the approximation ratios achieved, that lend
themselves very well to machine computations. Sample examples have in fact
been computed; in Table 1 at the end of this work we report the approxima-
tion ratios r obtained for some values of η, where η = B/n is our unbalance
parameter, and of another parameter θ used in the algorithm, as described in
Subsection 3.1.

A problem related to MaxCUT-LU and addressed in [1] and [5] is the prob-
lem of finding a cut of maximum weight such that the cardinalitiy of one shore
of the cut is equal to a given integer k. The approximation ratios that the au-
thors achieve with sophisticated techniques are naturally weaker than ours: for
instance in [5], for the case k = B = n/3, they achieve a 0.58 ratio against
our 0.797.

Other problems concerning optimal cuts with side constraints have recently
received attention, as described in the introductory section of [8].

The formulation of MaxCUT-LU is introduced in the next section. The algo-
rithms used to solve the problem are presented in the subsequent sections, the
first devoted the the case when the parameter η is small, the other when the
unbalance parameter is large. The last section concludes the work, summarizes
the results, and presents some of them in Table 1.

204 G. Galbiati and F. Maffioli

2 The Formulation

MaxCUT-LU can be formulated by assigning to each vertex i a binary variable
xi ∈ {−1, 1}, with vertices on the same shore of the cut receiving the same value,
and by setting wij = 0 if (i, j) /∈ E, as:

w∗ := max

⎧⎨⎩1
4

∑
i,j

wij(1− xixj) :
∑
i,j

xixj ≤ B2;xi ∈ {−1, 1}, i = 1, . . . , n

⎫⎬⎭ .
(1)

The semidefinite relaxation of this binary quadratic program can be formulated
as follows:

wSDP :=max

⎧⎨⎩1
4

∑
i,j

wij(1 −Xij) :
∑
i,j

Xij ≤ B2;Xii =1, i=1, .., n;X ∈Mn

⎫⎬⎭
(2)

where Mn is the set of real, symmetric, positive semidefinite matrices of order
n. It is easy to see that any solution x of (1) yields a solution X of (2) with
Xij = xixj . Hence obviously w∗ ≤ wSDP .

It is known (see e.g. [3]) that such SDP program can be solved to any degree
of accuracy in polynomial time. From an almost optimal solution, one can then
derive a solution of the integer program using appropriate rounding techniques.

Rounding techniques applied to the solution of SDP relaxations of Combi-
natorial Optimization problems in order to get integral solutions of guaranteed
degree of approximation have been pioneered by Goemans and Williamson [7]
for the MAX CUT and MAX SAT problems. Frieze and Jerrum [6] have devel-
oped such techniques further, addressing the MAX BISECTION and the MAX-k
CUT problems. Yinyu Ye [14] has improved the approximation ratio for MAX
BISECTION using a more sophisticated rounding technique. With respect to
MAX CUT, problem MaxCUT-LU presents, as MAX BISECTION, the extra
difficulty of having to deal with two objectives: the weight of the cut and the
size of its shores.

3 The Algorithm for Small Unbalance

We now present our first algorithm, suitable for solving problem MaxCUT-LU
whenB is small. In the algorithm, I indicates the identity matrix, the parameters
θ and k are fixed in an appropriate way, as specified in Subsection 3.1 entirely
devoted to this aspect. The algorithm uses the following technique, introduced
in [14], which refines the one in [7]: from a solution X̃ of the SDP relaxation first
it constructs a new matrix X as a convex combination of X̃ and the identity
matrix I; then to matrix X , which is positive definite, it applies the Cholesky
decomposition to obtain vectors (v1, ...,vn) on the unit n-dimensional sphere
Sn. The algorithm then uses the so called random hyperplane technique, i.e.

Approximating Maximum Cut with Limited Unbalance 205

it repeatedly generates a uniformly distributed vector r on the unit sphere,
computes vector u = (r · v1, ..., r · vn) and then rounds u to a vector x̂ with
x̂i ∈ {−1, 1}, and x̂i = −1 iff ui ≥ 0, i = 1, ..., n. Each vector x̂ hence identifies
a cut (S, V \S) of G, where S = {i : x̂i = 1} or S = {i : x̂i = −1}; in our
algorithm we always choose wlog S to be the set of vertices with the larger
cardinality.

In the analysis of our algorithm, for the sake of clarity, we assume that X̃ is an
optimum solution of the SDP relaxation and that the vectors of the Cholesky de-
composition exactly satisfy the equalities (vi ·vj) =Xij . It can be shown that the
inaccuracies resulting from using an almost optimal solution X̃ and an almost
exact Cholesky decomposition can be absorbed into the approximation factor
presented in Theorem 3. This ensures that the algorithm runs in polynomial
time.

Finally function rebalance(S), when invoked by the algorithm, moves the
nodes which least contribute to the weight of the cut from set S to the other set
of the cut, so as to reduce the number of nodes in S to (n+B)/2.

Throughout this paper, w(S) denotes the weight of the cut (S, V \S), N is set
equal to n2

4 −
B2

4 .

Algorithm 1

1 - Solve the SDP problem (2) and let X̃ij be the solution matrix;
2 - fix a value θ with 0 ≤ θ < 1 and a positive integer k;
3 - let X = θX̃ + (1− θ)I;
4 - apply Cholesky decomposition to X to obtain vectors (v1, ...,vn);
5 - SR = φ;
6 - repeat for k times the following {

6.1 - generate a uniformly distributed vector r on the unit sphere;
6.2 - compute u = (r · v1, ..., r · vn);
6.3 - round u to vector x̂ ∈ {−1, 1}n identifyng a cut (S, V \S);
6.4 - if |S| ≤ (n+B)/2 /* the cut is feasible for MaxCUT-LU */

let S̃ = S else let S̃ = rebalance(S);
6.5 - if w(S̃) > w(SR) /* a better cut for MaxCUT-LU is found */

let SR = S̃;
}

7 - return SR.

In order to analyze the quality of the solution SR returned by the algorithm,
we define:

α(θ) := min
−1≤y<1

1− 2
π arcsin(θy)
1− y (3)

and

β(θ, η) := (1− 1
n

)
1

1− η2
b(θ) + c(θ) (4)

206 G. Galbiati and F. Maffioli

with

b(θ) = 1− 2
π

arcsin(θ) and c(θ) = min
−1≤y<1

2
π

arcsin(θ) − arcsin(θy)
1− y . (5)

Notice that the definition of α(θ) is as in [14] whereas that of β(θ, η) is different.

Lemma 1. If functions α(θ) and β(θ, η) are defined as in (3) and (4), then for
the cut (S, V \S) generated by Algorithm 1 at line 6.3, we have that Ex[w(S)] ≥
α(θ)w∗ and Ex[|S|(n − |S|)] ≥ β(θ, η)N , where w(S) is the random variable
associated to the cut.

Proof. (sketched) In [7], [6] it is proved that the probability that vertices i and
j are separated in the cut identified by S is equal to 1− 2

π arcsin(Xij). It follows
easily that Ex[x̂ix̂j] = 2

π arcsin(Xij) and hence that

Ex[w(S)] =
1
4

∑
i,j

wij(1−
2
π

arcsin(Xij)). (6)

Since arcsin(Xii) = π/2, for each i = 1, ..., n, and Xij = θX̃ij when i
= j, we
conclude from (3) that the value in (6) is:

≥ 1
4

∑
i,j

wijα(θ)(1 − X̃ij) = α(θ)wSDP ≥ α(θ)w∗.

We also can derive that:

Ex[|S|(n− |S|] =
1
4

∑
i,j

(1 − 2
π

arcsin(Xij))

=
1
4

∑
i�=j

(1 − 2
π

arcsin(θ) +
2
π

arcsin(θ)− 2
π

arcsin(θX̃ij))

≥ 1
4

∑
i�=j

(b(θ) + c(θ)(1 − X̃ij)) (7)

Now, noticing that
∑

i�=jX̃ij ≤ B2 − n, from (7) we derive that:

Ex[|S|(n− |S|] ≥ 1
4
[(n2 − n)b(θ) + (n2 − n)c(θ) + c(θ)(n−B2)]

= [(1 − 1
n

)
1

1− η2
b(θ) + c(θ)]

n2 −B2

4
= β(θ, η)N.

��

Lemma 2. For every cut (S, V \S) generated by Algorithm 1 at line 6.3 we have
that w(S)

w∗ ≤ 2 and |S|(n−|S|)
N ≤ 1

1−η2 .

Approximating Maximum Cut with Limited Unbalance 207

Proof. Let S = {i1, ..., is}. If s ≤ (n + B)/2 then by definition w(S) ≤ w∗.
Otherwise denote by δc(i) the contribution of vertex i to the weight of the cut
(S, V \S), i.e. δc(i) =

∑
j /∈Swij . Obviously w(S) =

∑
i∈S δc(i). Suppose wlog

that δc(i1) ≤ ... ≤ δc(is). Since s > (n + B)/2 we may remove from S the
first s − (n + B)/2 vertices and we let S′ be the reduced set. The weight of
the cut has decreased by at most w(S)

s (s − n+B
2). By definition w(S′) ≤ w∗

but w(S′) ≥ w(S) − w(S)
s (s − n+B

2) and this implies w(S)
w∗ ≤ 2s/(n + B) ≤ 2.

The second inequality of the lemma follows immediately from the fact that
|S|(n−|S|)

N ≤ n2

4
4

n2−B2 . ��

Let us now fix a value γ > 0 and study the random variable

Z =
w(S)
w∗ + γ

|S|(n− |S|)
N

. (8)

The two preceding lemmas imply that Z ≤ 2 + γ
1−η2 and that Ex[Z] ≥

α(θ) + γβ(θ, η). Hence for small values of η (say η <
√

2/3 ≤ 0.8165) variable
Z is bounded above, so that for any ε > 0 and for constant k sufficiently large,
Algorithm 1 generates a set S for which:

Z ≥ [α(θ) + γβ(θ, η)](1 − ε). (9)

Theorem 1. For any γ > 0, if random variable Z satisfies (9), then for the
corresponding set S̃ computed by Algorithm 1 at line 6.4, we have:

w(S̃) ≥ min(g1, g2)w∗ (10)

with:

g1 = 2(

√
γ[α(θ) + γβ(θ, η)]

(1 + η)(1 − ε)
1− η − γ

1− η) (11)

g2 = [α(θ) + γβ(θ, η)](1 − ε)− γ

1− η2
. (12)

Proof. When the algorithm finds a set S satisfying (9) we let δ = |S|/n and
λ = w(S)/w∗. From (8) and (9) it follows that:

λ ≥ [α(θ) + γβ(θ, η)](1 − ε)− 4γδ(1− δ)
1

1− η2
(13)

There are two possibilities for S̃: either S̃ = rebalance(S) or S̃ = S. In the
first case it is easy to see that w(S̃) ≥ n+B

2
w(S)
|S| = 1+η

2δ λw
∗, whereas in the

second case we obviously have w(S̃) = λw∗. Hence w(S̃) ≥ min(1+η
2δ λ, λ)w

∗ and,
using inequality (13) for λ, we get:

w(S̃) ≥ min(f1, f2)w∗ (14)

with

f1 = [α(θ) + γβ(θ, η)]
(1 + η)(1 − ε)

2δ
− 2γ

1− δ

1− η (15)

208 G. Galbiati and F. Maffioli

f2 = [α(θ) + γβ(θ, η)](1 − ε)− 4γδ(1− δ)
1

1− η2
. (16)

In order to simplify (15) and (16) and to remove the dependence on δ we
study functions f1 and f2 for δ ≥ 0. Simple calculations show that function f1

has a minimum at δ1 =
√

[α(θ)+γβ(θ,η)](1−η2)(1−ε)
4γ , where it assumes the value

2(
√

γ[α(θ) + γβ(θ, η)] (1+η)(1−ε)
1−η − γ

1−η) which is, by definition, the value of func-
tion g1. Instead function f2 has a minimum at δ2 = 1/2, where it takes on the
value [α(θ) + γ(β(θ, η)](1 − ε)− γ

1−η2 which again is, by definition, the value of
function g2. ��

Our aim now is to find the value of γ that maximizes min(g1, g2).
It can be seen that function g1 is concave, is equal to zero for γ = 0 and for

γR = α(θ)(1−η2)(1−ε)
1−β(θ,η)(1−η2)(1−ε) and has a maximum at

γM =
α(θ)

2β(θ, η)
(

1√
1− β(θ, η)(1 − η2)(1− ε)

− 1).

Of course γM ≤ γR.
The graph of function g2 on the other hand is a line. For γ = 0 g2 has value

α(θ)(1− ε) and then decreases until it vanishes, quite surprisingly, again in γR.

We have the following result.

Theorem 2. For each η , 0 ≤ η < 1, we have that g2 ≤ g1 iff γL ≤ γ ≤
γR, where we let γL = α(θ)(1−η2)(1−ε)

(1+2η)2−β(θ,η)(1−η2)(1−ε) and γR = α(θ)(1−η2)(1−ε)
1−β(θ,η)(1−η2)(1−ε) .

Moreover γL = γR iff η = 0.

Proof. For simplicity of notation we let ξ = [α(θ)+γβ(θ, η)]. Then by definition
we have that g2 ≤ g1 iff:

ξ(1− η2)(1− ε)− γ ≤ 2(1− η2)(

√
γξ

(1 + η)(1− ε)
1− η − γ

1− η)

and hence iff:

ξ(1 − η2)(1 − ε)− γ + 2γ(1 + η) ≤ 2
√
ξγ(1− η2)(1− ε)(1 + η)2. (17)

Now if we let x2 = ξγ(1− η2)(1 − ε) then inequality (17) becomes:

x2 − 2xγ(1 + η) + γ2(1 + 2η) ≤ 0 (18)

which has solutions for γ ≤ x ≤ γ(1 + 2η). It can easily be seen that γ ≤√
ξγ(1− η2)(1 − ε) iff γ ≤ α(θ)(1−η2)(1−ε)

1−β(θ)(1−η2)(1−ε) and that
√
ξγ(1− η2)(1− ε) ≤

γ(1 + 2η) iff α(θ)(1−η2)(1−ε)
(1+2η)2−β(θ,η)(1−η2)(1−ε) ≤ γ. ��

Now from Theorem 1 and Theorem 2 we obtain the following.

Approximating Maximum Cut with Limited Unbalance 209

Corollary 1. The value of γ that maximizes min(g1, g2) is γM if γM ≤ γL

otherwise it is γL. Moreover maxγ>0 min(g1, g2) is equal to the value assumed
by function g1 in γM , if γM ≤ γL, or to the value assumed in γL, if γM > γL.

As a consequence of this corollary we can obtain a more precise evaluation of (10).
Since it can be shown that η2 ≤ 1−β(θ,η)(1−ε)

4−β(θ,η)(1−ε) iff γM ≤ γL, the following lemma
follows from Theorem 1 and Corollary 1; long but straightforward computations
show that ρ1(resp. ρ2) is equal to the value assumed by function g1 in γM

(resp.γL).

Lemma 3. If the random variable Z satisfies (9) for γ ∈ {γM , γL}, then for the
corresponding set S̃ computed by Algorithm 1 at line 6.4 , we have:

w(S̃) ≥ ρ1w
∗ if η2 ≤ 1− β(θ, η)(1 − ε)

4− β(θ, η)(1 − ε)
and γ = γM (19)

w(S̃) ≥ ρ2w
∗ if η2 ≥ 1− β(θ, η)(1 − ε)

4− β(θ, η)(1 − ε)
and γ = γL (20)

with:

ρ1 =
α(θ)

β(θ, η)(1 − η) (1−
√

1− β(θ, η)(1 − η2)(1 − ε)) (21)

ρ2 =
4ηα(θ)(1 + η)(1 − ε)

(1 + 2η)2 − β(θ, η)(1 − η2)(1 − ε)
. (22)

Notice that functions ρ1 and ρ2, for each ε > 0, depend on η and also on the
value fixed in the algorithm for θ. For η = 0 and ε = 0, ρ1 coincides with the
bound given in [14]; function ρ2 has instead no counterpart in [14].

3.1 The Appropriate Choice of θ and k

In this subsection we discuss the choices that Algorithm 1 makes at line 2. Let
us first consider the choice of θ. Since ρ1 (ρ2), for fixed ε > 0, is a function
of η and θ, then, for any given η, it is possible to compute, and to use in the
algorithm, the value of θ that maximizes ρ1 (ρ2). The ratios reported in the first
three groups of lines of Table 1 have been computed with this strategy, for n
sufficiently large (n ≥ 104) and ε = 0. The figures below show the behavior of
the two functions; function ρ1 has been plotted for θ ∈ [0.8..1] and η ∈ [0..0.2],
function ρ2 for θ ∈ [0.8..1] and η ∈ [0.2..0.8]. It is evident that the value of θ
that maximizes ρ1 (ρ2) is a value in [0.88..1).

For what concerns the choice of k we make the following considerations.
If we let x = [α(θ) + γβ(θ, η)](1 − ε) and p = Pr{Z < x} then we have,

for bounded values of η and hence of Z, that Ex[Z] ≤ px + (1 − p)max(Z).
This inequality, together with the fact that from Lemma 1 and 2 it follows that
Z ≤ 2 + γ

1−η2 and Ex[Z] ≥ α(θ) + γβ(θ, η), implies that:

p ≤
2 + γ

1−η2 − (α(θ) + γβ(θ, η))

2 + γ
1−η2 − (α(θ) + γβ(θ, η))(1 − ε)

. (23)

210 G. Galbiati and F. Maffioli

0.2

1.0
0.15

0.95
0.1

0.9
0.85

0.05

0.8

0.65
0.0

0.675

0.7

0.725

0.75

0.775

0.8

0.8
1.0

0.6 0.95
0.4 0.9

0.850.2
0.8

0.7

0.725

0.75

0.775

0.8

Fig. 1. On the left: function ρ1 for θ ∈ [0.8..1] and η ∈ [0..0.2]. On the rigth: function
ρ2 for θ ∈ [0.8..1] and η ∈ [0.2..0.8].

It can be verified that (
2+ γ

1−η2 −(α(θ)+γβ(θ,η))

2+ γ

1−η2 −(α(θ)+γβ(θ,η))(1−ε))
k ≤ ε if we choose k =

1
ε log 1

ε for small value of η and γ = γM , or k = 1
ε log 1

ε2 for large value of η and
γ = γL.

In Algorithm 1 we therefore fix the values of θ and k according to these
considerations. The overall performance of the algorithm then may finally be
specified by the following theorem.

Theorem 3. Let ε be a small positive constant. Then Algorithm 1 returns a
solution SR having Ex[w(SR)] ≥ ρw∗ with:

ρ = ρ1(1− ε) if η2 ≤ 1− β(θ, η)(1 − ε)
4− β(θ)(1 − ε)

(24)

ρ = ρ2(1− ε) if η2 ≥ 1− β(θ, η)(1 − ε)
4− β(θ)(1 − ε)

, (25)

where ρ1 and ρ2 are defined in (21) and (22).

Proof. Let γ1 = γM , γ2 = γL. For each i ∈ {1, 2}, let xi = [α(θ)+γiβ(θ, η)](1−ε),
let Zi be the random variable defined in (8) with γ = γi, and let ZMi be the ran-
dom variable assuming the maximum value for Zi in the loop of Algorithm 1, with
(S̃i, V \ S̃i)) being the corresponding cut. It is straightforward that Ex[w(SR)] ≥
Ex[w(S̃i)] and that Ex[w(S̃i)] ≥ ρiw

∗ Pr{w(S̃i) ≥ ρiw
∗}, i ∈ {1,2}. Now

from Lemma 3 it follows that Pr{w(S̃1) ≥ ρ1w
∗} ≥ Pr{Z1 ≥ x1} when

η2 ≤ 1−β(θ,η)(1−ε)
4−βθ)(1−ε) , and also that Pr{w(S̃2) ≥ ρ2w

∗} ≥ Pr{Z2 ≥ x2} when

η2 ≥ 1−β(θ,η)(1−ε)
4−βθ)(1−ε) . From the considerations made on the appropriate choice of

k, we derive that Pr{ZMi ≥ xi) ≥ 1 − ε, for each i ∈ {1, 2}, and the conclusion
follows. ��

Hence the following proposition can be stated and easily proved.

Approximating Maximum Cut with Limited Unbalance 211

Proposition 1. For each of the values of η reported in the first three groups of
lines of Table 1, the value of ρ guaranteed by Theorem 3 is larger than the value
of r reported in the table, for n sufficiently large.

Proof. The values reported in the table have been computed, by truncation at
the third decimal, for each η, using the value of θ that maximizes ρ1 (ρ2) for n
sufficiently large (n ≥ 104) and ε = 0. Since ρi(1 − ε) tends, for ε → 0 , to a
value greater or equal to the one reported in the table, the result follows. ��

4 The Algorithm for Large Unbalance

In this section we use the following very simple algorithm, that uses function
rebalance(S), introduced in Section 3. Here with wM we indicate the weight of
a maximum cut.

Algorithm 2

- use the algorithm in [7] to obtain a cut (S, V \S) having
w(S) ≥ 0.87856wM ;

- denote by S the set of vertices with larger cardinality;
- if |S| ≤ (n+B)/2 /* the cut is feasible for MaxCUT-LU */

let S̃ = S else let S̃ = rebalance(S);
- return S̃.

Theorem 4. Algorithm 2 returns a set S̃ having:

w(S̃) ≥ 0.87856
1 + η

2
w∗. (26)

Proof. If S̃ = S the result follows easily since wM ≥ w∗ and η ≤ 1. Otherwise,
as in the proof of Lemma 2, the removal from S of the |S| − (n+B)/2 vertices
that contribute less to the weight w(S) of the cut reduces the weight by at most
w(S)
|S| (|s| − n+B

2). Hence w(S̃) ≥ w(S) − w(S)
|S| (|S| − n+B

2) = w(S)n+B
2|S| . Since

w(S) ≥ 0.87856 wM the result follows. ��

5 Conclusions

We have presented two polynomial time randomized approximation algorithms
giving non-trivial performance guarantees for the MaxCUT-LU problem. The
approximation ratios have been obtained by extending to this problem the
methodology used in [14] for Max Bisection and by combining this technique
with another one that uses the algorithm of [7]. Depending on the value of η,
(24) or (25) or (26) give our best approximation result. These approximation
ratios are expressed by compact and precise expressions that lend themselves
very well to machine computations. In Table 1 we report the ratios r obtained

212 G. Galbiati and F. Maffioli

Table 1.

η 0.0000 0.0500 0.1000 0.1050 0.1065

θ 0.888 0.890 0.894 0.895 0.895

r 0.699 0.731 0.759 0.761 0.762

η 0.1065 0.2000 0.3333 0.4000 0.4500

θ 0.893 0.941 0.966 0.972 0.975

r 0.762 0.788 0.797 0.798 0.798

η 0.4930 0.5000 0.6000 0.7000 0.8000

θ 0.977 0.977 0.980 0.982 0.984

r 0.797 0.797 0.795 0.793 0.790

η 0.8000 0.8500 0.9000 0.9500 0.9999

r 0.790 0.8126 0.834 0.856 0.878

for some values of the parameter η. The values in the first group are given by
(24), those in the last group are given by (26), the others by (25). Moreover the
values reported in the first three groups have been computed, for n sufficiently
large (n ≥ 104) and ε = 0, with truncation at the third decimal, using the values
of θ, also reported in the table, that maximize the ratios.

For smaller n, e.g. n = 103, some of the approximation ratios in the table
decrease only by 10−3. Note that the breaking point between Algorithms 1 and
2 occurs for η <

√
2/3, as we have assumed.

References

1. Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for Maximum Coverage
and Max Cut with Given Sizes of Parts. In: Cornuéjols, G., Burkard, R.E., Woeg-
inger, G.J.(eds.): Integer Programming and Combinatorial Optimization. Lecture
Notes in Computer Science, Vol. 1610. Springer-Verlag, Berlin Heidelberg New
York (1999) 17–30

2. Akiyama, J., Avis, D., Chvatal, V., Era, H.: Balancing signed graphs. Discrete
Applied Mathematics 3 (1981) 227–233

3. Alizadeh, F.: Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM J. Optimization 5 (1995) 13–51

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. Journal of the ACM 45 (1998) 501–555

5. Feige, U., Langberg, M.: Approximation algorithms for maximization problems in
graph partitioning. J. of Algorithms 41 (2001) 1074–211

6. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and
MAX BISECTION. Algorithmica 18 (1997) 67–81

7. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of
ACM 42 (1995) 1115–1145

8. Hayrapetyan, A., Kempe, D., Pal, M., Svitkina, Z.: Unbalanced Graph Cuts. In:
Brodal, G.S., Leonardi, S.(eds.): Algorithms - ESA 2005 Lecture Notes in Computer
Science, Vol. 3669. Springer-Verlag, Berlin Heidelberg New York (2005) 191–202

Approximating Maximum Cut with Limited Unbalance 213

9. H̊astad, J.: Some optimal inapproximability results. Journal of the ACM 48 (2001)
798-869

10. Kaporis, A.C., Kirousis, L.M., Stavropoulos, E.C.: Approximating Almost All In-
stances of MAX-CUT Within a Ratio Above the H̊astad Threshold. In: Azar, Y.,
Erlebach, T. (eds.): Algorithms-ESA 2006. Lecture Notes in Computer Science,
Vol. 4168. Springer-Verlag, Berlin Heidelberg New York (2006) 432–443

11. Poljak, S., Tuza, Z.: Maximum cuts and large bipartite subgraphs. In: Cook, W.,
Lovasz, L., Seymour, P.(Eds.): Combinatorial Optimization. AMS - DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, Vol. 20. American
Mathematical Society, Providence, RI (1995) 181–244

12. Trevisan, L., Sorkin, G., Sudan, M., Williamson, D.: Gadgets, approximation, and
linear programming. SIAM Journal on Computing 29(6) (2000) 2074-2097

13. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag, (2001), chapter 26
14. Ye, Y.: A .699-approximation algorithm for Max-Bisection. Math. Programming

Ser. A (90) (2001) 101–111

Worst Case Analysis of Max-Regret, Greedy and

Other Heuristics for Multidimensional
Assignment and Traveling Salesman Problems

Gregory Gutin1,2, Boris Goldengorin3,4, and Jing Huang5,6

1 Department of Computer Science, Royal Holloway University of London,
Egham, Surrey TW20 OEX, UK

gutin@cs.rhul.ac.uk
2 Department of Computer Science, University of Haifa, Israel

3 Department of Econometrics and Operations Research, University of Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands

B.Goldengorin@rug.nl
4 Department of Applied Mathematics, Khmelnitsky National University, Ukraine

5 Department of Mathematics and Statistics, P.O. Box 3045,
University of Victoria, Canada V8W 3P4

jing@math.uvic.ca
6 School of Mathematics and Computer Science,

Nanjing Normal University, Nanjing, China

Abstract. Optimization heuristics are often compared with each other
to determine which one performs best by means of worst-case perfor-
mance ratio reflecting the quality of returned solution in the worst case.
The domination number is a complement parameter indicating the qual-
ity of the heuristic in hand by determining how many feasible solutions
are dominated by the heuristic solution. We prove that the Max-Regret
heuristic introduced by Balas and Saltzman finds the unique worst pos-
sible solution for some instances of the s-dimensional (s ≥ 3) assign-
ment and asymmetric traveling salesman problems of each possible size.
We show that the Triple Interchange heuristic (for s = 3) also intro-
duced by Balas and Saltzman and two new heuristics (Part and Recursive
Opt Matching) have factorial domination numbers for the s-dimensional
(s ≥ 3) assignment problem.

1 Introduction

The Multidimensional Assignment Problem (abbreviated s-AP in the case of
s dimensions) is a well-known optimization problem with a host of applica-
tions (see, e.g., [3,8] for ’classic’ applications and [5,24] for recent applications in
solving systems of polynomial equations and centralized multisensor multitarget
tracking). In fact, several applications described in [5,8,24] naturally require the
use of s-AP for values of s larger than 3. The Asymmetric Traveling Salesman
Problem (ATSP) has a large variety of applications, see, e.g., [14] for a recent
one in geophysical seismic acquisitions. However, most of ATSP research was

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 214–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Worst Case Analysis of Max-Regret, Greedy and Other Heuristics 215

concentrated on its symmetric special case, see, e.g., [13] and more research of
the general case heuristics is required [20].

Bothwell-knownGreedyalgorithmandso-far-less-investigatedMax-Regret
algorithm [3,9,24] are fast construction heuristics that build a solution element
by element without an attempt to improve it. We perform worst case analysis
of Max-Regret for s-AP and ATSP by means of domination analysis.

While computational experiments in [3] show that Max-Regret significantly
outperforms Greedy for s-AP (s ≥ 3), more extensive experiments in [24]
indicate that neither of the two heuristics dominates the other. This conclusion
is confirmed in our paper. Moreover, we prove that Greedy and Max-Regret
find the unique worst assignments for some instances of s-AP (s ≥ 3) of every
possible size. We introduce and discuss heuristics that perform much better in
the worst case than Greedy and Max-Regret. Such heuristics can be more
reliable alternatives to both Greedy and Max-Regret especially when we deal
with previously uninvestigated families of instances of s-AP.

Experimental results in [9] indicate that a version of Max-Regret, Max-
Regret-FC (called R-R-Greedy in [9]), clearly outperforms Greedy for
ATSP. Nevertheless, we prove that, like Greedy, both Max-Regret and Max-
Regret-FC find the unique worst tour for some instances of ATSP of each
possible size. This, in particular, settles the problem of finding good bounds for
the domination number of Max-Regret-FC stated in [9].

The paper is organized as follows. We provide basic notions on domination
analysis and Greedy in Section 2. In Section 3, we describe Max-Regret for
s-AP and prove that, for each n ≥ 1 and s ≥ 3, there is an s-AP instance of
size ns for which Max-Regret constructs the unique worst assignment. For
2-AP we only prove that there are instances for which Max-Regret finds an
assignment which is worse than at least n! − 2n−1 assignments. We conjecture
that, in fact, the domination number of Max-Regret for 2-AP is exactly 2n−1.
Section 4 is devoted to three s-AP heuristics which always find assignments that
are not worse that ((n− 1)!)s−1 assignments. Two of the heuristics are new and
might well be of interest in practice. In Section 5 we describe Max-Regret and
its version Max-Regret-FC for ATSP and prove that, for each n ≥ 2, there is
an ATSP instance on n vertices for which both heuristics find the unique worst
tour. Conclusions appear in Section 6.

2 Domination Analysis and Greedy

Research on combinatorial optimization (CO) heuristics has produced a large
variety of heuristics especially for well-known CO problems and, thus, it is im-
portant to develop ways of selecting the best ones among them. In most of the
literature, heuristics are compared by means of computational experiments and,
while experimental analysis is of definite importance, it cannot cover all possible
families of instances of the CO problem at hand and, in particular, it usually
does not cover the hardest instances. Worst case analysis is normally performed
by approximation analysis [2], where upper or lower bounds for the worst case

216 G. Gutin, B. Goldengorin, and J. Huang

performance ratio are of interest. Introduced in [11], domination analysis pro-
vides an alternative and a complement to approximation analysis. In domination
analysis, we are interested in the domination number or domination ratio of the
heuristic solution. We define these parameters below.

Pros and cons of domination analysis are discussed in [15] and, in our view,
it is advantageous to have bounds for both performance ratio and domination
ratio of a heuristic whenever it is possible. Roughly speaking this would enable
us to see a 2D picture rather than a 1D picture.

Let P be a minimization CO problem, let I be an instance of P , let S(I)
denote the set of feasible solutions of I, and let H be a heuristic for P . The size
of I is denoted by |I| and the solution obtained by H for I is denoted by H(I).
When considering the weight of a solution y we write w(y).

The domination number of a heuristic H is

domn(H,n) = min
I∈P: |I|=n

domn(H, I),

where domn(H, I) = |{y ∈ S(I) : w(H(I)) ≤ w(y)}|. In other words, the
domination number domn(H,n) is the maximum integer such that the solution
H(I) obtained by H for any instance I of P of size n is not worse than at least
domn(H,n) feasible solutions of I (including H(I)). The domination ratio of H
is

domr(H,n) = min
I∈P: |I|=n

domn(H, I)
|S(I)| .

In many cases, domination analysis is very useful. For example, the greedy
algorithm has domination number 1 for many CO problems, see, e.g., [4,17,23].
In other words, the greedy algorithm, in the worst case, produces the unique
worst possible solution. This is reflected in computational experiments with the
greedy algorithm for the asymmetric traveling salesman problem (ATSP), see,
e.g., [20], where it was concluded that the greedy algorithm ‘might be said to
self-destruct.’ The fact that the greedy algorithm is of domination number 1 for
s-AP (s ≥ 3) as well (see Theorem 1) implies that the algorithm should be used
with great care for s-AP. In [6], domination analysis is used to establish which
of the two heuristics for the generalized ATSP is a better choice (both heuristics
exhibited similar behavior in computational experiments, but the domination
number of one of them turned out to be significantly larger than that of the
other heuristic). Bounds for domination numbers/ratios were obtained for many
CO heuristics, see, e.g., [1,15,18,21,22].

Many CO problems can be formulated as follows. We are given a pair (E,F),
where E is a finite set and F is a family of subsets of E, and a weight function w
that assigns a real weight w(e) to every element of E. A maximal (with respect
to inclusion) set B ∈ F is called a base. The weight w(S) of S ∈ F is defined
as the sum of the weights of the elements of S. The objective is to find a base
B ∈ F of minimum weight.

The well-known Greedy algorithm proceeds as follows. It starts from the
empty set X . In every iteration Greedy adds a minimum weight element e to

Worst Case Analysis of Max-Regret, Greedy and Other Heuristics 217

the current set X provided e
∈ X and X ∪ {e} is a subset of a set in F . The
algorithm stops when a base has been constructed.

Unfortunately, both computational experiments and domination analysis
point out that Greedy is often a poor choice for heuristic even if it is only
used to generate initial solutions that will be improved by more sophisticated
heuristics. Thus, other heuristics are of definite interest. Max-Regret algo-
rithm studied in [3,24] for 3-AP seems to be a promising and quite universal
heuristic. Variations of Max-Regret were introduced and investigated in [9]
for ATSP. Our analysis for both s-AP (s ≥ 3) and ATSP indicates that Max-
Regret is of similar quality in the worst case as Greedy, namely, the domi-
nation number of Max-Regret for both problems equals 1. Recently, Bendall
and Margot [7] studied an extension of Greedy, which is of domination number
1 for many CO problems as well.

3 Greedy, s-AP-Max-Regret and s-AP-Max-Regret-FC

For a fixed s ≥ 2, the s-AP is stated as follows. Let X1 = X2 = · · · = Xs =
{1, 2, . . . , n}. We will consider only vectors that belong to the Cartesian prod-
uct X = X1 × X2 × · · · × Xs. Each vector e is assigned a weight w(e). For a
vector e, ej denotes its jth coordinate, i.e., ej ∈ Xj . A partial assignment is a
collection e1, e2, . . . , et of t ≤ n vectors such that ei

j
= ek
j for each i
= k and

j ∈ {1, 2, . . . , s}. An assignment is a partial assignment with n vectors. The
weight of a partial assignment A = {e1, e2, . . . , et} is w(A) =

∑t
i=1 w(ei). The

objective is to find an assignment of minimum weight.
We will start from Greedy for s-AP. Using Theorem 2.1 in [17] one can prove

that, for each s ≥ 2, n ≥ 2, there exists an instance of s-AP for which Greedy
will find the unique worst possible assignment. We will give a short direct proof
of this result, which is also of interest later in this section.

A vector h is backward if min{hi : 2 ≤ i ≤ s} < h1; a vector h is horizontal
if h1 = h2 = · · · = hs. A vector is forward if it is not horizontal or backward.

Lemma 1. Let F be an assignment of s-AP (s ≥ 2). Either all vectors of F are
horizontal or F contains a backward vector.

Proof. Let F = {f1, f2, . . . , fn}, where f i
1 = i for each 1 ≤ i ≤ n. Assume

that not every vector of F is horizontal. We show that F has a backward vector.
Suppose it is not true. Then F has a forward vector f i. Thus, there is a subscript
j such that f i

j > i. By the pigeonhole principle, there exists a superscript k > i

such that fk
j < k = fk

1 , i.e., fk is backward; a contradiction. ��

Theorem 1. For each s ≥ 2, n ≥ 2, there exists an instance of s-AP for which
Greedy will find the unique worst possible assignment.

Proof. Let M > n and let E = {e1, e2, . . . , en}, where ei = (i, i, . . . , i) for every
1 ≤ i ≤ n. We define the required instance I as follows: w(ei) = iM for each
1 ≤ i ≤ n and, for each f
∈ E, w(f) = min{fi : 1 ≤ i ≤ s} ·M + 1.

218 G. Gutin, B. Goldengorin, and J. Huang

Observe that Greedy will construct E. Let F = {f1, f2, . . . , fn} be any other
assignment, where f i

1 = i for each 1 ≤ i ≤ n. By Lemma 1, F has a backward
vector fk and

w(fk) ≤ (k − 1)M + 1 (1)

By the definition of the weights and (1),

w(F) =
n∑

i=1

w(f i) =
∑
i�=k

w(f i) + w(fk)

≤
∑
i�=k

(iM + 1) + (k − 1)M + 1

=
n∑

i=1

iM + n−M

<

n∑
i=1

iM = w(E) ��

The heuristic s-AP-Max-Regret described next was first introduced in [3] for
3-AP and its modifications for s-AP were considered in [5]. The authors of [12]
gave a general approach that extends Max-Regret heuristics.
s-AP-Max-Regret proceeds as follows. Set Wj = A = ∅ for each j =

1, 2, . . . , s. While |X1|
= |W1| do the following: For each i ∈ {1, 2, . . . , s} and
a ∈ Xi \Wi, find two lightest vectors ei,a and f i,a (w(ei,a) ≤ w(f i,a)) in the set

H = {h ∈ X : hi = a, hj ∈ Xj \Wj , j ∈ {1, 2, 3, . . . , s} \ {i}}

and compute the difference (called regret) Δi,a = w(f i,a)−w(ei,a). Compute the
max-regret

Δi0,a0 = max{Δi,a : i ∈ {1, 2, . . . , s}, a ∈ Xi \Wi}.

Add ei0,a0 to A and each ei0,a0
j to Wj , j = 1, 2, . . . , s.

A modification of s-AP-Max-Regret that computes the regrets only for the
first coordinates, i.e., only Δ1,a’s will be denoted s-AP-Max-Regret-FC1.

Remark 1. In s-AP-Max-Regret and s-AP-Max-Regret-FC, when |H | = 1
we set Δi,a = 0. Since we perform the worst case analysis, when breaking ties,
we will follow the choice leading to the worst solution among possible options.

Theorem 2. The domination number of both s-AP-Max-Regret and s-AP-
Max-Regret-FC equals 1 for each s ≥ 3.

Proof. Consider the instance I described in the proof of Theorem 1. Observe
that Δi,1 = (M + 1)−M = 1 for each i and Δi,a = (M + 1)− (M + 1) = 0 for

1 FC abbreviates First Coordinate.

Worst Case Analysis of Max-Regret, Greedy and Other Heuristics 219

each a > 1. Thus, both s-AP-Max-Regret and s-AP-Max-Regret-FC will
choose e1 first. Similarly, we can see that both heuristics will uniquely choose
e2, . . . , en one by one. In Theorem 1, we showed that E = {e1, e2, . . . , en} is
unique worst possible for I. ��
Notice that the proof of Theorem 2 cannot be extended to 2-AP-Max-Regret
or 2-AP-Max-Regret-FC. Moreover, it was proved in [9] that 2-AP-Max-
Regret-FC is of domination number 2n−1. We believe that 2n−1 is also the
domination number for 2-AP-Max-Regret, but we are unable to prove it. In
support of this conjecture we prove the following:

Theorem 3. The domination number of 2-AP-Max-Regret is at most 2n−1.

Proof. Choose n positive numbers d1 > d2 > · · · > dn arbitrarily and consider
the following instance of 2-AP: w(i, i) = −di for each i = 1, 2, . . . , n, w(i, j) = 0
for each 1 ≤ i < j ≤ n and w(i, j) = −

∑i
k=j dk for each 1 ≤ j < i ≤ n.

Initially 2-AP-Max-Regret computes the regrets as follows: Δ1,k = d1 and
Δ2,k = dn for each k = 1, 2, . . . , n. We may assume that 2-AP-Max-Regret
chooses (1,1) (see Remark 1). Similarly, we can see that 2-AP-Max-Regret
chooses (2, 2), (3, 3), . . . , (n, n) one by one. Thus, the weight of the assignment
M = {(1, 1), (2, 2), . . . , (n, n)} built by 2-AP-Max-Regret equals −

∑n
i=1 di.

For an integer p ≥ 1, let Op(i, p) denote an operation that replaces in M the
vectors {(i, i), (i+ 1, i+ 1), . . . , (i+ p, i+ p)} by the vectors {(i, i+ 1), (i+ 1, i+
2), . . . , (i+p−1, i+p), (i+p, i)}. The operation Op(i, 0) does nothing. Consider
the following procedure. It starts from i := 1. It chooses an arbitrary integer p
with 0 ≤ p ≤ n− i, performs Op(i, p), sets i := i+ p+ 1 and continues this loop
while i < n.

Notice that Op(i, p) preserves the weight of the assignment and, thus, every
assignment obtained by the procedure is of weightw(M). Let f(n) be the number
of all possible assignments that can be obtained by the procedure. Clearly, f(1) =
1 and set f(0) = 1. To compute f(n) observe that after using Op(1, p) we
will have f(n − p − 1) possible assignments. Thus, for each n ≥ 2 we have
f(n) = f(n−1)+f(n−2)+ . . .+f(0). This implies that f(n) = 2n−1 for n ≥ 1.

To show that any assignment that cannot be constructed by the procedure
is of weight smaller than w(M), build a complete digraph DKn with vertices
{1, 2, . . . , n} and with a loop on every vertex. For arbitrary 1 ≤ i, j ≤ n, the arc
(i, j) of DKn corresponds to the vector (i, j) and we set the weight of arc (i, j)
equal w(i, j). We call an arc (i, j) with i < j forward and with i ≥ j backward.
Notice that the weight of every forward arc is 0.

An assignment corresponds to a cycle factor of DKn, which is a collection of
disjoint cycles (some of them may be loops) that cover all vertices of DKn. In
particular, the weight of an assignment equals the weight of the corresponding
cycle factor in DKn. Notice that the weight of every forward arc is 0 and, thus,
the weight of a cycle factor equals the sum of the weights of its backward arcs.
We call a pair (i, j), (i′, j′) of backward arcs intersecting if the intervals [j, i]
and [j′, i′] of real line intersect (one of these intervals may be just a point).
Observe that if a cycle factor does not have intersecting backward arcs, then

220 G. Gutin, B. Goldengorin, and J. Huang

its weight equals −
∑n

i=1 di = w(M) and every such cycle factor corresponds
to an assignment that can be obtained by the procedure above. Thus, there are
exactly f(n) = 2n−1 cycle factors without intersecting backward arcs.

Now suppose that a cycle factor F has an intersecting pair (i, j), (i′, j′) of
backward arcs. Thus, there is an integer k such that k ∈ [j, i] ∩ [j′, i′]. By the
definition of a cycle factor, k < n. Observe that the above arguments imply that
w(F) ≤ −

∑n
i=1 di − dk < w(M).

So, there are only 2n−1 assignments of weight not smaller than w(M). ��

4 s-AP Heuristics of Large Domination Number

For ATSP, there are several heuristics with domination number at least (n− 2)!
(see, e.g., [18]). In this section, we will demonstrate that s-AP admits a number
of heuristics of domination number at least ((n − 1)!)s−1. We introduce two
such new heuristics Part and Recursive Opt Matching, which might be
of interest in practice. The key lemma is the following result similar to the
corresponding result in [16].

The average weight of an assignment (denoted by w̄) is the total weight of
all assignments divided by the number of assignments. The average weight of a
vector in X is w(X)/ns. Thus, by linearity of expectation, the average weight
of an assignment equals w̄ = w(X)/ns−1.

Lemma 2. Let H be a heuristic that for each instance of s-AP constructs an
assignment of weight at most the average weight of an assignment. Then the
domination number of H is at least ((n− 1)!)s−1.

Proof. Consider an instance I of s-AP. Let C denote the set of all vectors of I
with the first coordinate equal 1. Consider P = {Af : f1 ∈ C}, where Af =
{f1, f2, . . . , fn} is an assignment with f i

j = f1
j +i−1 (modulo n), j = 1, 2, . . . , s.

Observe that each vector is in exactly one Af and, thus, P is a partition of
X = X1×X2×· · ·×Xs into assignments. Since

∑
f∈C w(Af) = w(X), |C| = ns−1

and w̄ = w(X)/ns−1, the heaviest assignment Ah in P is of weight at least w̄.
Let S(Xi) be the set of all permutations on Xi (2 ≤ i ≤ s) and let π2 ∈

S(X2), π3 ∈ S(X3), . . . , πs ∈ S(Xs). To obtain P(π2, π3, . . . , πs) from P , replace
f i

j with πj(f i
j) for each j ≥ 2 and i = 1, 2, . . . , n. Thus, we obtain a family

F = {P(π2, π3, . . . , πs) : π2 ∈ S(X2), π3 ∈ S(X3), . . . , πs ∈ S(Xs)}

of partitions of X into assignments. The family consists of (n!)s−1 partitions.
We may choose the heaviest assignment in each partition and, thus, obtain a
family A of assignments of weight at least w̄.

However, we can have several occurrences of the same assignment in A. We
claim that no assignment G = {g1, g2, . . . , gn} (with gi

1 = i for i = 1, 2, . . . , n)
can be in more than ns−1 partitions of F . We may assume that G ∈ P .
Let G be also in some P(π2, π3, . . . , πs). By definition, there is an assignment
{d1, d2, . . . , dn} in P with di

1 = i for i = 1, 2, . . . , n such that gi
j = πj(di

j) for

Worst Case Analysis of Max-Regret, Greedy and Other Heuristics 221

each j = 2, 3, . . . , s and i = 1, 2, . . . , n. These relations uniquely define the per-
mutations π2, π3, . . . , πs. Thus, {g1, g2, . . . , gn} can be repeated in F at most
|P| = ns−1 times.

So, each assignment in A is of weight at least w̄, no assignment in A can be
repeated more than ns−1 times, and A has (n!)s−1 assignments with repetitions.
Therefore, we can find (in A) ((n−1)!)s−1 distinct assignments of weight at least
w̄. Since w(H(I)) ≤ w̄ and I is arbitrary, we conclude that H is of domination
number at least (n!)s−1. ��
Consider a new heuristic Part that finds a partition P of X into assignments
and computes an assignment in P of minimum weight. The proof above shows
that Part is of domination number at least ((n− 1)!)s−1. This heuristic is fast
(of time complexity O(ns)) and might be of interest at least for producing initial
assignments for local improvement heuristics such as the Triple Interchange
introduced in [3] for 3-AP. Before studying Triple Interchange we consider
another new heuristic Recursive Opt Matching for s-AP.

Recursive Opt Matching proceeds as follows. Compute a new weight
w̄(i, j) = w(Xij)/ns−2, where Xij is the set of all vectors with last two co-
ordinates equal i and j, respectively. Solving the 2-AP with the new weights to
optimality, find an optimal assignment {(i, πs(i)) : i = 1, 2, . . . , n}, where πs is
a permutation on Xs. While s
= 1, introduce (s − 1)-AP with weights given as
follows: w′(f i) = w(f i, πs(i)) for each vector f i ∈ X ′, where X ′ = X1 ×X2 ×
· · · × Xs−1, with last coordinate equal i and apply Recursive Opt Match-
ing recursively. As a result we have obtained permutations πs, πs−1, . . . , π2. The
output is the assignment {(i, π2(i), π3(π2(i)), . . . , πs(πs−1(. . . (π2(i))) . . .)) : i =
1, 2, . . . , n}.

Theorem 4. For each s ≥ 2, Recursive Opt Matching is of domination
number at least ((n− 1)!)s−1.

Proof. By Lemma 2, it suffices to show that the assignment obtained by Recur-
sive Opt Matching is of weight at most w̄ = w(X)/ns−1, the average weight
of an assignment. Our proof is by induction on s ≥ 2. Clearly the assertion holds
for s = 2 and consider s ≥ 3. Observe that

w(X)
ns−1

= w̄ =
1
n

n∑
i=1

n∑
j=1

w̄(i, j) ≥
n∑

i=1

w̄(i, πs(i)) =
w′(X ′)
ns−2

.

Let A = {(g1, πs(1)), . . . , (gn, πs(n))} be an assignment obtained by Recursive
Opt Matching, where gi ∈ X ′ such that gi

s−1 = i for every i = 1, . . . , n. Let
A′ = {g1, . . . , gn}. Then by induction hypothesis, w̄′ = w′(X ′)/ns−2 ≥ w′(A′) =
w(A) and we are done. ��
It is straightforward to see that for any fixed s ≥ 3, Recursive Opt Matching
is of running time merely O(ns).

Consider 3-AP. Triple Interchange is a local search heuristic that at ev-
ery step tries to improve an assignment D = {d1, d2, . . . , dn} by looking at a

222 G. Gutin, B. Goldengorin, and J. Huang

triple of vectors di, dj , dk. It compares w(di) +w(dj) +w(dk) with the weight of
each of 35 triples (hi, hj , hk)
= (di, dj , dk) such that hi

1 = di
1, h

j
1 = dj

1, h
k
1 = dk

1 ,
{hi

2, h
j
2, h

k
2} = {di

2, d
j
2, d

k
2} and {hi

3, h
j
3, h

k
3} = {di

3, d
j
3, d

k
3}. If Triple Inter-

change finds a triple hi, hj , hk lighter than di, dj , dk, it replaces di, dj , dk with
hi, hj , hk in D. The heuristic stops when no triple in the current assignment D
can be replaced by a lighter one.

The following theorem does not depend on the initial assignment in Triple
Interchange.

Theorem 5. Consider 3-AP. The domination number of Triple Interchange
is at least ((n− 1)!)2.

Proof. Assume that E = {e1, e2, . . . , en}, where ei = (i, i, i), is an assignment
that cannot be improved using Triple Interchange. The set of all vectors
X = Y ∪Z ∪E, where Y is the set of vectors with exactly two equal coordinates
and Z is the set of vectors with all coordinates being different. Clearly, w(X) =
w(Y) + w(Z) + w(E). We will prove that w(Y) ≥ 3(n − 1)w(E) and w(Z) ≥
(n − 1)(n − 2)w(E), which imply that w(E) ≤ w̄ = w(X)/n2 and the result of
the theorem follows from Lemma 2.

Observe that |Y | = 3n(n− 1) (there are 3 ways to choose which coordinate is
different from the other two, n ways to choose value from {1, 2, . . . , n} for this
coordinate and n − 1 ways to choose value for the two coordinates). The set
Y can be partitioned into |Y |/2 pairs of the form f i, f j such that f i has one
coordinate equal i and two coordinates equal j and f j has one coordinate equal j
and two coordinates equal i. For each such pair f i, f j , we have w(f i)+w(f j) ≥
w(ei) + w(ej) as otherwise we could improve ei, ej, ek by f i, f j , ek (k
= i, j).
Summing up all the inequalities we obtain w(Y) ≥ 3(n− 1)w(E).

Observe that |Z| = n(n−1)(n−2). For a vector f = (i, j, k), let f+ = (k, i, j)
and f− = (j, k, i). Let F = {(i, j, k) ∈ X : i < j < k} and G = {(i, j, k) ∈ X :
j < i < k}. Then Z = {{f, f+, f−} : f ∈ F ∪ G} is a partition of Z into |Z|/3
triples. Observe that for a triple h = (i, j, k), h+, h−, we have w(h) + w(h+) +
w(h−) ≥ w(ei) + w(ej) + w(ek). This implies w(Z) ≥ (n− 1)(n− 2)w(E). ��
The Pair Interchange heuristic also described in [3] is similar to Triple
Interchange, but tries to improve pairs of vectors in the current assignment.
Pair Interchange does not always produce an assignment whose weight is at
most the average weight of an assignment. To see that consider an instance of 3-
AP with the following weights: w(i, i, i) = 0 for each i = 1, 2, . . . , n, w(i, j, k) = 1
for each triple i, j, k in which exactly two members equal, and w(i, j, k) = −n3

for each triple i, j, k in which all members of different. The assignment E =
{(1, 1, 1), (2, 2, 2), . . . , (n, n, n)} cannot be improved by Pair Interchange, but
w(E) = 0 and the average weight of an assignment is negative for each n ≥ 3.

5 ATSP–Max-Regret and ATSP-Max-Regret-FC

A variation of Max-Regret for ATSP, ATSP-Max-Regret-FC, was first in-
troduced in [9] under a different name, R-R-Greedy. The authors of [9] found an

Worst Case Analysis of Max-Regret, Greedy and Other Heuristics 223

exponential upper bound on the domination number of ATSP-Max-Regret-
FC and stated a problem to obtain a nontrivial lower bound for the domination
number. Extensive computational experiments in [9] demonstrated a clear supe-
riority of ATSP-Max-Regret-FC over Greedy and several other construction
heuristics in [10]. Therefore, the result of Theorem 6 is somewhat unexpected.

Let K∗
n be a complete digraph with vertices V = {1, 2, . . . , n}. The weight of

an arc (i, j) is denoted by wij . The ATSP is the problem of finding a tour (i.e., a
Hamilton cycle) of K∗

n of total minimum weight. Let Q be a collection of disjoint
paths in K∗

n. An arc a = (i, j) is a feasible addition to Q if Q + a is either a
collection of disjoint paths or a tour in K∗

n. Consider ATSP-Max-Regret-FC
and ATSP-Max-Regret.

ATSP-Max-Regret-FC proceeds as follows. Set W = T = ∅. While V
= W
do the following: For each i ∈ V \W , compute two lightest arcs (i, j) and (i, k)
that are feasible additions to T , and compute the difference Δi = |wij−wik|. For
i ∈ V −W with maximum Δi choose the lightest arc (i, j), which is a feasible
addition to T and add (i, j) to M and i to W.

ATSP-Max-Regret proceeds as follows. Set W+ = W− = T = ∅. While
V
= W+ do the following: For each i ∈ V \ W+, compute two lightest arcs
(i, j) and (i, k) that are feasible additions to T , and compute the difference
Δ+

i = |wij −wik|; for each i ∈ V \W−, compute two lightest arcs (j, i) and (k, i)
that are feasible additions to T , and compute the difference Δ−

i = |wji − wki|.
Compute i′ ∈ V \ W+ with maximum Δ+

i′ and i′′ ∈ V \W− with maximum
Δ−

i′′ . If Δ+
i′ ≥ Δ−

i′′ choose the lightest arc (i′, j′), which is a feasible addition to
T and add (i′, j′) to M , i′ to W+ and j′ to W−. Otherwise, choose the lightest
arc (j′′, i′′), which is a feasible addition to T and add (j′′, i′′) to M , i′′ to W−

and j′′ to W+.

Remark 2. In ATSP-Max-Regret-FC, if |V \W | = 1 we set Δi = 0. A similar
remark applies to ATSP-Max-Regret.

Theorem 6. The domination number of both ATSP-Max-Regret-FC and
ATSP-Max-Regret equals 1 for each n ≥ 2.

Proof. Since the proofs for both heuristics use the same family of instances and
are similar, we restrict ourselves only to ATSP-Max-Regret-FC.

Consider an instance of ATSP on the complete digraph with vertex set {1, 2,
. . . , n}, n ≥ 2. Let the weights be as follows: wik = min{0, i − k} for each
1 ≤ i
= k ≤ n, i
= n, and wnk = −k for each 1 ≤ k ≤ n − 1. We will
slightly modify the weights: w′

ij = wij unless j = i + 1 modulo n. We set
w′

i,i+1 = −1 − 1
n+1 for 1 ≤ i ≤ n − 1 and w′

n,1 = −1 − 1
n+1 . ATSP-Max-

Regret-FC will use the weight function w′.
ATSP-Max-Regret-FC constructs the tour TMR = (1, 2, 3, . . . , n, 1) by

first choosing the arc (n − 1, n), then the arc (n − 2, n − 1), etc. The last two
arcs are (1, 2) and (n, 1) (they must be included in the tour). Indeed, initially
Δn−1 = n+2

n+1 > Δi for each i
= n − 1. Once (n − 1, n) is added to TMR,
Δn−2 = n+2

n+1 becomes maximal, etc.

224 G. Gutin, B. Goldengorin, and J. Huang

Let T ′, T ′′ be a pair of tours. Since
∑

(i,j)∈K∗
n
|wij −w′

ij | < 1, w(T ′) < w(T ′′)
implies w′(T ′) < w′(T ′′). Thus, to prove that w′(T) < w′(TMR) for each tour
T
= TMR, it suffices to show that w(T) < w(TMR).

Observe that w(TMR) = −n. Let T = (i1, i2, . . . , in, i1) be an arbitrary tour,
where i1 = 1. Suppose that is = n. Observe that the weight of the path P =
(i1, i2, . . . , is) equals

∑s−1
k=1 min{0, ik − ik+1}. Thus, w(P) ≤ 1 − n and w(P) =

1−n if and only if i1 < i2 < · · · < is. Since is = n, the weight of the arc (is, is+1)
equals −is+1. Thus, w(T) ≤ 1 − n − is+1 and w(T) ≥ w(TMR) if and only if
is+1 = 1 and i1 < i2 < · · · < is. We conclude that w(T) ≥ w(TMR) if and only
if T = TMR. ��

6 Conclusions

We have carried out worst-case analysis of Max-Regret for the Multidimen-
sional Assignment Problem (s-AP, s ≥ 3) and Asymmetric Traveling Salesman
Problem (ATSP). We proved that Max-Regret for both problems may find
unique worst possible solution. Thus, like Greedy, Max-Regret should be
used with great care and, possibly, avoided all together when instances of pre-
viously unstudied families are to be solved. In such a case heuristics of factorial
domination number that have a proven excellent computational record (such
as Helsgaun’s version of Lin-Kernighan heuristic for the Symmetric TSP, see
[19,22]) appear to be a much better choice.

Acknowledgements. We are thankful to all anonymous reviewers for useful
comments and suggestions. Most of this paper was written when the first author
was visiting Department of Mathematics and Statistics, University of Victoria,
Canada. He would like to thank the department for its hospitality. His research
was supported in part by the IST Programme of the European Community,
under the PASCAL Network of Excellence, IST-2002-506778. The second author
acknowledges support by the DFG project SI 657/5.

References

1. N. Alon, G. Gutin and M. Krivelevich, Algorithms with large domination ratio. J.
Algorithms 50 (2004) 118–131.

2. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M.
Protasi, Complexity and Approximation, Springer, Berlin, 1999.

3. E. Balas and M.J. Saltzman, An algorithm for the three-index assignment problem.
Operations Research 39 (1991) 150–161.

4. J. Bang-Jensen, G. Gutin and A. Yeo, When the greedy algorithm fails. Discrete
Optimization 1 (2004) 121–127.

5. H. Bekker, E.P. Braad and B. Goldengorin, Using bipartite and multidimentional
matchings to select roots of a system of polynomial equations. In Proc. ICCSA’05,
Lecture Notes in Computer Science 3483 (2005) 397–406.

6. D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo and A. Zverovitch, Transformations of
generalized ATSP into ATSP. Operations Research Letters 31 (2003) 357–365.

Worst Case Analysis of Max-Regret, Greedy and Other Heuristics 225

7. G. Bendall and F. Margot, Greedy Type Resistance of Combinatorial Problems.
To appear in Discrete Optimization.

8. R. Burkard and E. Cela, Linear assignment problems and extensions. In Handbook
of Combinatorial Optimization, Z. Du and P. Pardalos (Eds). Kluwer Academic
Publishers: Dordrecht, 1999; 75–149.

9. D. Ghosh, B. Goldengorin, G. Gutin and G. Jäger, Tolerance based greedy algo-
rithms for the traveling salesman problem. To appear in Communic. in DQM.

10. F. Glover, G. Gutin, A. Yeo and A. Zverovich, Construction heuristics for the
asymmetric TSP. European Journal of Operational Research 129 (2001) 555–568.

11. F. Glover and A. Punnen, The traveling salesman problem: New solvable cases and
linkages with the development of approximation algorithms, J. Oper. Res. Soc. 48
(1997) 502–510.

12. B. Goldengorin, G. Jäger and P. Molitor. Some Basics on Tolerances. Proc.
AAIM’06, S.-W. Cheng and C.K. Poon (Eds.), Lecture Notes in Computer Sci-
ence 4041 (2006) 194-206.

13. G. Gutin and A. Punnen, eds., The Traveling Salesman Problem and its Variations,
Kluwer, Dordrecht, 2002.

14. G. Gutin, H. Jakubowicz, S. Ronnen and A. Zverovitch, Seismic vessel problem.
Communic. in DQM 8 (2005) 13–20.

15. G. Gutin and A. Yeo, Domination Analysis of Combinatorial Optimization Algo-
rithms and Problems. Graph Theory, Combinatorics and Algorithms: Interdisci-
plinary Applications (M. Golumbic and I. Hartman, eds.), Springer-Verlag, 2005.

16. G. Gutin and A. Yeo, Polynomial approximation algorithms for the TSP and QAP
with a factorial domination number. Discrete Appl. Math. 119 (2002) 107–116.

17. G. Gutin and A. Yeo, Anti-matroids. Operations Research Letters 30 (2002) 97–99.
18. G. Gutin, A. Yeo and A. Zverovitch, Exponential Neighborhoods and Domination

Analysis for the TSP. In The Traveling Salesman Problem and its Variations (G.
Gutin and A. Punnen, eds.), Kluwer, Dordrecht, 2002.

19. K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Europ. J. Oper. Res. 126 (2000) 106–130.

20. D.S. Johnson, G. Gutin, L. McGeoch, A. Yeo, X. Zhang, and A. Zverovitch, Ex-
perimental Analysis of Heuristics for ATSP. In The Traveling Salesman Problem
and its Variations (G. Gutin and A. Punnen, eds.), Kluwer, Dordrecht, 2002.

21. A.E. Koller and S.D. Noble, Domination analysis of greedy heuristics for the fre-
quency assignment problem, Discrete Math. 275 (2004) 331-338.

22. A.P. Punnen, F. Margot and S.N. Kabadi, TSP heuristics: domination analysis
and complexity. Algorithmica 35 (2003) 111–127.

23. A.P. Punnen and S. Kabadi, Domination analysis of some heuristics for the trav-
eling salesman problem. Discrete Appl. Math. 119 (2002) 117–128.

24. A.J. Robertson, A set of greedy randomized adaptive local search procedure im-
plementations for the multidimentional assignment problem. Computational Opti-
mization and Applications 19 (2001) 145–164.

Improved Online Hypercube Packing

Xin Han1,	, Deshi Ye2,		, and Yong Zhou3

1 School of Informatics, Kyoto University, Kyoto 606-8501, Japan
hanxin@kuis.kyoto-u.ac.jp

2 College of Computer Science, Zhejiang University, Hangzhou, 310027, China
yedeshi@zju.edu.cn

3 Graduate School of Science, Hokkaido University, Sapporo, Japan
zhou@castor.sci.hokudai.ac.jp

Abstract. In this paper, we study online multidimensional bin packing
problem when all items are hypercubes. Based on the techniques in one
dimensional bin packing algorithm Super Harmonic by Seiden, we give a
framework for online hypercube packing problem and obtain new upper
bounds of asymptotic competitive ratios. For square packing, we get an
upper bound of 2.1439, which is better than 2.24437. For cube packing,
we also give a new upper bound 2.6852 which is better than 2.9421 by
Epstein and van Stee.

1 Introduction

The classical one-dimensional Bin Packing is one of the oldest and most well-
studied problems in computer science [2], [5]. In the early 1970’s it was one of
the first combinatorial optimization problems for which the idea of worst-case
performance guarantees was investigated. It was also in this domain that the
idea of proving lower bounds on the performance of online algorithm was first
developed. In this paper, we consider a generalization of the classical bin packing
problem: hypercube packing problem.

Problem Definition. Let d ≥ 1 be an integer. We receive a sequence δ of
items p1, p2, ..., pn. Each item p is a d-dimensional hypercube and has a fixed
size, which is s(p) × · · · × s(p), i.e., s(p) is the size of p in any dimension. We
have an infinite number of bins, each of which is a d-dimensional unit hypercube.
Each item must be assigned to a position (x1(p), ..., xd(p)) of some bin, where
0 ≤ xi(p) and xi(p) + s(p) ≤ 1 for 1 ≤ i ≤ d. Further, the positions must be
assigned in such a way that no two items in the same bin overlap. Note that
for d = 1 the problem reduces to the classic bin packing problem. In this paper,
we study the online version of this problem, i.e., each item must be assigned in
turn, without knowledge of the next items.

Asymptotic competitive ratio. To evaluate an online algorithm for bin pack-
ing, we use the standard measure Asymptotic competitive ratio which is defined
as follows.
� Research supported in part by KAKENHI (16092101, 16092215, 16300002).

�� Research supported in part by NSFC (10601048).

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 226–239, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Online Hypercube Packing 227

Given an input list L and an online algorithm A, Let OPT (L) and A(L) be
the cost (number of bins used) by an optimal (offline) algorithm and the cost by
online algorithm A for packing list L, respectively. The asymptotic competitive
ratio R∞

A of algorithm A is defined by

R∞
A = lim

k→∞
sup max

L
{A(L)/OPT (L)|OPT (L) = k}.

Previous results. On the classic online bin packing, Johnson et al. [9] showed
that the First Fit algorithm has the competitive ratio 1.7. Yao [17] gave an upper
bound of 5/3. Lee and Lee [11] showed the Harmonic algorithm has the compet-
itive ratio 1.69103 and improved it to 1.63597. Ramanan et al. [13] improved the
upper bound to 1.61217. Currently, the best known upper bound is 1.58889 by
Seiden [14]. On the lower bounds, Yao [17] showed no online algorithm has per-
formance ratio less that 1.5. Brown [1] and Liang [10] independently improved
this lower bound to 1.53635. The lower bound currently stands at 1.54014, due
to van Vliet [16].

On online hypercube packing, Coppersmith and Raghavan [3] showed an up-
per bound of 43/16 = 2.6875 for online square packing and an upper bound
6.25 for online cube packing. The upper bound for square packing was improved
to 395/162 < 2.43828 by Seiden and van Stee [15]. For online cube packing,
Miyazawa and Wakabayashi [12] showed an upper bound of 3.954. Epstein and
van Stee [6] gave an upper bound of 2.2697 for square packing and an upper
bound of 2.9421 for online cube packing. By using a computer program, the up-
per bound for square packing was improved to 2.24437 by Epstein and van Stee
[8]. They [8] also gave lower bounds of 1.6406 and 1.6680 for square packing and
cube packing, respectively.

Our contributions. When the Harmonic algorithm [11] is extended into the
online hypercube packing problem, the items of sizes 1/2 + ε, 1/3 + ε, 1/4 +
ε, . . . are still the crucial items related to the asymptotic competitive ratio,
where ε > 0 is sufficiently small. Using the techniques in one dimensional bin
packing, Epstein and van Stee [8] combined the items of size in (1/2, 1 − Δ]
with the items of size in (1/3,Δ] and improved the Harmonic algorithm for
hypercube packing, where Δ is a specified number in (1/3, 0.385). In this paper,
we do not only consider the combinatorial packing for the items in (1/2, 1 −
Δ] and (1/3,Δ], but also other crucial items. Based on the techniques in one
dimensional bin packing algorithm Super Harmonic by Seiden [14], we classify all
the items into 17 groups and give a framework for online hypercube packing. To
analyse our algorithm, we give a weighting system consisting of four weighting
functions. By the weighting functions, we show that for square packing, the
asymptotic competitive ratio of our algorithm is at most 2.1439 which is better
than 2.24437[8], for cube packing, the ratio is at most 2.6852, which is also better
than 2.9421[8].

Definition: If an item p of size (side length) s(p) ≤ 1/M , where M is a fixed
integer, then call p small, otherwise large.

228 X. Han, D. Ye, and Y. Zhou

2 Online Packing Small Items

The following algorithm for packing small items is from [4], [7]. The key ideas
are below:

1. Classify all small squares into M groups. In detail, for an item p of size
s(p), we classify it into group i such that 2k · s(p) ∈ (1/(i + 1), 1/i], where
i ∈ {M, ..., 2M − 1} and k is an integer.

2. Exclusively pack items of the same group into bins, i.e., each bin is used to
pack items belonged to the same group. During packing, one bin may be
partitioned into sub-bins.

Definition: An item is defined to be of type i if it belongs to group i. A sub-bin
which received an item is said to be used. A sub-bin which is not used and not
cut into smaller sub-bins is called empty. A bin is called active if it can still
receive items, otherwise closed.

Given an item p of type i, where 2k × s(p) ∈ (1/(i + 1), 1/i], algorithm
AssignSmall(i) works as follows.

1. If there is an empty sub-bin of size 1/(2ki), then the item is simply packed
there.

2. Else, in the current bin, if there is no empty sub-bin of size 1/(2ji) for j < k,
then close the bin and open a new bin and partition it into sub-bins of size
1/i. If k = 0 then pack the item in one of sub-bins of size 1/i. Else goes to
next step.

3. Take an empty sub-bin of size 1/(2ji) for a maximum j < k. Partition it
into 2d identical sub-bins. If the resulting sub-bins are larger than 1/(2ki),
then take one of them and partition it in the same way. This is done until
sub-bins of size 1/(2ki) are reached. Then the item is packed into one such
sub-bin.

The following results are from [7].

Lemma 1. In the above algorithm,

i) at any time, there are at most M active bins.
ii) in each closed bin of type i ≥M , the occupied volume is at least (id−1)/(i+

1)d ≥ (Md − 1)/(M + 1)d.

So, roughly speaking, a small item with size x takes at most (M+1)d

(Md−1)
× xd bin.

3 Algorithm A for Online Hypercube Packing

The key points in our online algorithm are

1. divide all items into small and large groups.
2. pack small items by algorithm AssignSmall, pack large items by an extended

Super Harmonic algorithm.

Before giving our algorithm, we first give some definitions and descriptions
about the algorithm, which are similar with the ones in [14], but some definitions
are different from the ones in [14].

Improved Online Hypercube Packing 229

Classification of large items: Given an integer M ≥ 11, let t1 = 1 > t2 >
· · · > tN+1 = 1/M > tN+2 = 0, where N is a fixed integer. We define the interval
Ij to be (tj+1, tj] for j = 1, ...,N + 1 and say a large item p of size s(p) has type
i if s(p) ∈ Ii.

Definition: An item of size s has type τ(s), where

τ(s) = j ⇔ s ∈ Ij .

Parameters in algorithm A: An instance of the algorithm is described by
the following parameters: integers N and K; real numbers 1 = t1 > t2 > · · · >
tN > tN+1 = 1/M , α1, ..., αN ∈ [0, 1] and 0 = Δ0 < Δ1 < · · · < ΔK < 1/2, and
a function φ : {1, ...,N} !→ {0, ...,K}.

Next, we give the operation of our algorithm, essentially, which is quite sim-
ilar with the Super Harmonic algorithm [14]. Each large item of type j is as-
signed a color, red or blue. The algorithm uses two sets of counters, e1, ..., eN

and s1, ..., sN , all of which are initially zero. si keeps track of the total number
of type i items. ei is the number of type i items which get colored red. For
1 ≤ i ≤ N , the invariant ei = �αisi� is maintained, i.e. the percentage of type i
items colored red is approximately αi.

We first introduce some parameters used in Super Harmonic algorithm, then
give the corresponding ones for d-dimensional packing. In one dimensional pack-
ing, a bin can be placed at most βi = �1/ti� items with size ti. After packing βi

type i items, there is δi = 1− tiβi space left. The rest space can be used for red
items.

However, we sometimes use less than δi in a bin in order to simplify the
algorithm and its analysis, i.e., we use D = {Δ1, ...,ΔK} instead of the set
of δi, for all i. Δφ(i) is the amount of space used to hold red items in a bin
which holds blue items of type i. We therefore require that φ satisfy Δφ(i) ≤ δi.
φ(i) = 0 indicates that no red items are accepted. To ensure that every red item
potentially can be packed, we require that αi = 0 for all i such that ti > ΔK ,
that is, there are no red items of type i. Define γi = 0 if ti > δK and γi =
max{1, �Δ1/ti�}, otherwise. This is the number of red item of type i placed in
a bin.

In d-dimensional packing, we place βd
i blue items of type i into a bin and

introduce a new parameter θi instead of γi. Let

θi = βd
i − (βi − γi)d.

This is the number of red items of type i that the algorithm places together
in a bin. In details, if ti > ΔK , then θi = 0, i.e., we do not pack type i
items as red items. So, in this case, we require αi = 0. Else if ti ≤ Δ1,
then θi = βd

i − (βi − �Δ1/ti�)d. If Δ1 < ti ≤ ΔK , we set θi = βd
i −

(βi − 1)d.
Here, we illustrate the structure of a bin for d = 2.

230 X. Han, D. Ye, and Y. Zhou

Wasted space

Blue item space

Red item space

Red

Blue

Fig. 1. If the bin is a (i, j) or (i, ?) bin, the amount of area for blue items is (tiβi)
2.

The amount of area left is 1 − (tiβi)
2. The amount of this area actually used for red

items is 1 − (1 − Δφ(i))
2, where Δφ(i) ≤ δi = 1 − tiβi.

Naming bins: Bins are named as follows:

{i|φi = 0, 1 ≤ i ≤ N, }
{(i, ?)|φi
= 0, 1 ≤ i ≤ N, }
{(?, j)|αj
= 0, 1 ≤ j ≤ N, }
{(i, j)|φi
= 0, αj
= 0, γjtj ≤ Δφ(i), 1 ≤ i, j ≤ N}.

We call these groups monochromatic, indeterminate blue, indeterminate red and
bichromatic, respectively. And we call the monochromatic and bichromatic
groups final groups.

The monochromatic group i contains bins that hold only blue items of type
i. There is only one open bin in each of these groups; this bin has fewer than βd

i

items. The closed bins all contain βd
i items.

The bichromatic group (i, j) contains bins that contain blue items of type i
along with red items of type j. A closed bin in this group contains βd

i type i
items and θj type j items. There are at most three open bins.

The indeterminate blue group (i, ?) contains bins that hold only blue items
of type i. These bins are all open, but only one has fewer than βd

i items.
The indeterminate red group (?, j) contains bins that hold only red items of

type j. These bins are all open, but only one has fewer than θj items.
Essentially, the algorithm tries to minimize the number of indeterminate

bins, while maintaining all the aforementioned invariants. That is, we try to
place red and blue items together whenever possible; when this is not pos-
sible we place them in indeterminate bins in hope that they can later be so
combined.

Improved Online Hypercube Packing 231

Algorithm A: A formal description of algorithm A is given as blow:

Initialize ei ← 0 and si ← 0 for 1 ≤ i ≤M + 1.
For a small item p, call algorithm AssignSmall.
For a large item p:

i← τ(p), si ← si + 1.
If ei < �αisi�:

ei ← ei + 1.
Color p red.
If there is an open bin in group (?, i) with fewer than θi type i items,

then pack p in this bin.
If there is an open bin in group (j, i) with fewer than θi type i items,

then pack p in this bin.
Else if there is some bin in group (j, ?) such that Δφ(j) ≥ γiti then

place p in it and change the group of this bin to (j, i).
Otherwise, open a new group (?, i) bin and place p in it.

Else:
Color p blue.
If φ(i) = 0:

If there is an open bin in group i with fewer than βd
i items, then

place p in it.
Otherwise, open a new group i bin and pack p there.

Else:
If, for any j, there is an open bin (i, j) with fewer than βd

i items,
then place p in this bin.

Else, if there is some bin in group (i, ?) with fewer than βd
i items,

then place p in this bin.
Else, if there is some bin in group (?, j) such that Δφ(i) ≥ γjtj then

pack p in it and change the group of this bin to (i, j).
Otherwise, open a new group (i, ?) bin and pack p there.

4 The Analyses for Square and Cube Packing

In this section, we fix the parameters in the framework given in the last section
for square packing and cube packing respectively. Then we analyse the com-
petitive ratios by a corresponding weighting system consisting of four weighting
functions.

4.1 An Instance of Algorithm A
Let M = 11, i.e., a small item has its side length as most 1/11. And the param-
eters in A are given in the following tables. First we classify all the items into 17
groups by fixing the values of ti, where 1 ≤ i ≤ 18. Then we calculate the number
of blue type i in a bin, βd

i . Finally, we define the set D = {Δ1, ...,ΔK} and the
function φ(i), which are related to how many red items θd

i can be accepted in a

232 X. Han, D. Ye, and Y. Zhou

bin, where K = 4. Note that αi which is the percentage of type i items colored
red will be given later. For square packing, we use a set of αi. While for cube
packing, we use another set of αi.

i (ti+1, ti] βi δi φ(i) γi

1 (0.7, 1] 1 0 0 0
2 (0.65, 0.7] 1 0.3 2 0
3 (0.60, 0.65] 1 0.35 3 0
4 (0.5, 0.60] 1 0.4 4 0
5 (0.4, 0.5] 2 0 0 0
6 (0.35, 0.4] 2 0.2 1 1
7 (1/3, 0.35] 2 0.3 2 1
8 (0.30, 1/3] 3 0 0 0
9 (1/4, 0.30] 3 0.1 0 1
10 (1/5, 1/4] 4 0 0 1
11 (1/6, 1/5] 5 0 0 1
12 (1/7, 1/6] 6 0 0 1
13 (1/8, 1/7] 7 0 0 1
14 (1/9, 1/8] 8 0 0 1
15 (0.1, 1/9] 9 0 0 1
16 (1/11, 0.1] 10 0 0 2
17 (0, 1/11] ∗ ∗ ∗ ∗

j = φ(i) Δj Red items accepted
1 0.20 11..16
2 0.30 9..16
3 0.35 7, 9..16
4 0.40 6..7, 9..16

Observation: By the above tables, in any dimension of a (4, ?) bin, the distance
between the type 4 item and the opposite edge (face) of the bin is at least
Δ4 = 0.4, since we pack a type 4 item in a corner of a bin. So, all red items with
size at most 0.4 can be packed in (4, ?) bins. In the same ways, all red items with
size at most 0.35 can be packed in (4, ?) and (3, ?) bins, all red items with size
at most 0.30 can be packed in (4, ?), (3, ?), (7, ?) and (2, ?) bins, all red items
with size at most 0.2 can be packed in (4, ?), (3, ?), (7, ?), (2, ?), (6, ?) bins.

Next we define the weight function W (p) for a given item p with size x.
Roughly speaking, a weight of an item is the maximal portion of a bin that it
can occupy. Given a small item p with size x, by the approach in [7], it occupies
a xd(11+1)d

11d−1
bin. So, we define

W (p) =
xd(11 + 1)d

11d − 1
.

Given a large item p, we consider four cases to define its weight. Let Ri and
Bi be the number of bins containing blue items of type i and red items of type
i, respectively. Let E be the number of indeterminate red group bins, i.e., some
bins like (?, i). If E > 0 then there are some (?, j) bins. Let

e = min{j|(?, j)},

which is the type of the smallest red item in an indeterminate red group bin.
Let A(L) be the number of bins used by A.

Improved Online Hypercube Packing 233

Case 1: E = 0, i.e., no indeterminate red bins. Then every red item is packed
with one or more blue items. Therefore

A(L) ≤ A(Ls) +
∑

i

Bi,

where A(Ls) is the number of bins for small items. Since there are a constant
number of active bins and every closed blue bin (i) or (i, ∗) contains 1

βd
i

items,
we define the weighting function as below:

W1,1(p) =
1− αi

βd
i

if x ∈ Ii, for i = 1..16.

Case 2: E > 0 and e = 6. Then there are some bins (?, 6) and no other bins
(?, j) bins, where j > 6. Since a type 4 item can be packed into a bin (?, 6), it is
impossible to have bins (4, ?). If we count all (4, j) bins as red bins, then

A(L) ≤ A(Ls) +
∑

i=1..3,5,8

Bi +
∑

i=6,7,9..16

(Ri +Bi).

Else we count all (4, j) bins as blue bins then

A(L) ≤ A(Ls) +
∑

i=1..16

Bi +R6.

Since there are a constant number of active bins and every closed blue bin (i)
or (i, ∗) contains 1

βd
i

items, every closed red bin (j, i) or (?, i) contains 1
θi

items,
we define the weighting functions for two subcases as below:

W2,1(p) =

⎧⎪⎪⎨⎪⎪⎩
1−αi

βd
i

if x ∈ Ii, for i = 1, 2, 3, 5, 8.
0 if x ∈ I4.
1−αi

βd
i

+ αi

θi
if x ∈ Ii, for i = 6, 7, 9..16.

and

W2,2(p) =

⎧⎨⎩
1−αi

βd
i

if x ∈ Ii, for i = 1..5, 7..16.
1−αi

βd
i

+ αi

θi
if x ∈ Ii, for i = 6.

Case 3: E > 0 and e = 7. Then there are some bins (?, 7) and no other bins
(?, j), where j > 7. Since a type 4 or a type 3 item can be packed into a bin
(?, 7), it is impossible to have bins (4, ?) and (3, ?). If we count all (4, j) and
(3, j) bins as red bins, then

A(L) ≤ A(Ls) +
∑

i=1,2,5,8

Bi +
∑

i=6,7,9..16

(Ri +Bi).

234 X. Han, D. Ye, and Y. Zhou

Else we count all (4, j) and (3, j) bins as blue bins then

A(L) ≤ A(Ls) +
∑

i=1..16

Bi +R6 +R7.

We define the weighting functions for two subcases as below:

W3,1(p) =

⎧⎪⎪⎨⎪⎪⎩
1−αi

βd
i

if x ∈ Ii, for i = 1, 2, 5, 8.
0 if x ∈ I3, I4.
1−αi

βd
i

+ αi

θi
if x ∈ Ii, for i = 6, 7, 9..16.

and

W3,2(p) =

⎧⎨⎩
1−αi

βd
i

if x ∈ Ii, for i = 1..5, 8..16.
1−αi

βd
i

+ αi

θi
if x ∈ Ii, for i = 6, 7.

Case 4: E > 0 and e ≥ 9. Then there are some bins (?, 9). Since a type 2,3,4,7
item can be packed into a bin (?, 9), it is impossible to have bins (2, ?), (3, ?),
(4, ?), (7, ?). If we count these bins (2, j), (3, j), (4, j), (7, j) as red bins, then

A(L) ≤ A(Ls) +
∑

i=1,5,8

Bi +
∑

i=6,9..16

(Ri +Bi) +R7.

We define the weighting function as below:

W4,1(p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
βd

i

if x ∈ Ii, for i = 1, 5, 8.
0 if x ∈ I2, I3, I4
1−αi

βd
i

+ αi

θi
if x ∈ Ii, for i = 6, 9..16

αi

θi
if x ∈ Ii, for i = 7.

Definition: A set of items X is a feasible set if all items in it can be packed
into a bin. And,

Wi,j(X) =
∑
p∈X

Wi,j(p).

Over all feasible sets X , let

Wi(X) = min{Wi,j(X)}, j = 1 or 2,

and define
P(W) = max{Wi(X)} for all i.

We defined four sets of weighting functions for all items. This is a weighting
system, which is a special case of general weighting system defined in [14]. So,
the following lemma follows directly from [14].

Lemma 2. The asymptotic performance ratio of A is upper bounded by P(W).

Improved Online Hypercube Packing 235

4.2 Upper Bounds for Square and Cube Packing

In this subsection, we fix the parameters αi for square packing and cube pack-
ing respectively, and get the upper bounds of the asymptotic competitive
ratios.

Definition: Let mi ≥ 0 be the number of type i items in a feasible set X . Given
an item p with size x, define an efficient function Ei,j(p) as Wi,j(p)/xd.

Theorem 1. The asymptotic performance ratio of A for square packing is at
most 2.1439.

Proof. For square packing, we set parameters αi according to the following table.

i 1− 4 5 6 7 8 9 10 11 12 13 14 15 16
αi 0 0 0.12 0.2 0 0.2546 0.2096 0.15 0.1 0.1 0.1 0.1 0.05
θi 0 0 3 3 0 5 7 9 11 13 15 17 36
β2

i 1 4 4 4 9 9 16 25 36 49 64 81 100

Based on the values in the following two tables, we calculate the upper bound
of P(W) = max{Wi(X)}.

i (ti+1, ti] W1,1(p) E1,1(p) W2,1(p) E2,1(p) W2,2(p) E2,2(p)
1 (0.7, 1] 1 2.05 1 2.05 1 2.05
2 (0.65, 0.7] 1 2.37 1 2.37 1 2.37
3 (0.6, 0.65] 1 2.7778 1 2.7778 1 2.7778
4 (0.5, 0.6] 1 4 0 0 1 4
5 (0.4, 0.5] 1/4 1.5625 1/4 1.5625 1/4 1.5625
6 (0.35, 0.4] 0.22 1.8 0.26 2.123 0.26 2.123
7 (1/3, 0.35] 0.2 1.8 0.8/3 2.4 0.2 1.8
8 (0.3, 1/3] 1/9 1.235 1/9 1.235 1/9 1.235
9 (1/4, 0.3] 0.0829 1.327 0.1338 2.141 0.0829 1.327

10..17 (0, 1/4] 1.235x2 1.235 1.99x2 1.99 1.235x2 1.235

Case 1: W1(X) ≤ 2.1439.
If m2 +m3 +m4 = 0, i.e., no type 2, 3, 4 items in X , then

W1(X) =
∑
p∈X

E1,1(p)s(p)2 ≤ 2.05
∑
p∈X

s(p)2 ≤ 2.05.

Else m2 +m3 +m4 = 1. Then m5 +m6 +m7 ≤ 3 and m6 +m7 +m9 ≤ 5,

W1(X) ≤ 1 +m5/4 + 0.22m6 + 0.2m7 + 0.0829m9

+1.235(1−
∑7

i=2 t
2
i+1mi −m9/16)

< 2.1439.

The last inequality follows from m4 = 1, m6 = 3 and m9 = 2.

236 X. Han, D. Ye, and Y. Zhou

Case 2: W2(X) ≤ 2.134.
If m2 +m3 +m4 = 0, i.e., no type 2, 3, 4 items in X , then

W2(X) = min{W2,1(X),W2,2(X)} ≤W2,2(X) ≤ 2.123.

Else m2 = 1. Then no type 1, 3, 4, 5, 6 items in X .

W2(X) = W2,2(X) ≤ 1 + 1.8(1− 0.652) = 2.0395.

Else m3 = 1. Then no type 1, 2, 4, 5 items in X and m6 +m7 ≤ 3 and m6 +m7 +
m9 ≤ 5,

W2(X) = W2,2(X) ≤ 1 + 0.26m6 + 0.2m7 + 0.0829m9

+1.235(1− 0.62 − 0.352m6 −m7/9−m9/16)
< 2.134.

The last inequality follows from m6 = 3 and m9 = 2.
Else m4 = 1. Then no type 1, 2, 3 items in X .

W2(X) ≤ W2,1(X) ≤ 0 + 2.4(1− 0.52) = 1.8.

i (ti+1, ti] W3,1(p) E3,1(p) W3,2(p) E3,2(p) W4,1(p) E4,1(p)
1 (0.7, 1] 1 2.05 1 2.05 1 2.05
2 (0.65, 0.7] 1 2.37 1 2.37 0 0
3 (0.6, 0.65] 0 0 1 2.7778 0 0
4 (0.5, 0.6] 0 0 1 4 0 0
5 (0.4, 0.5] 1/4 1.5625 1/4 1.5625 1/4 1.5625
6 (0.35, 0.4] 0.26 2.123 0.26 2.123 0.26 2.123
7 (1/3, 0.35] 0.8/3 2.4 0.8/3 2.4 0.2/3 0.6
8 (0.3, 1/3] 1/9 1.235 1/9 1.235 1/9 1.235
9 (1/4, 0.3] 0.1338 2.141 0.0829 1.327 0.1338 2.141

10..17 (1/5, 1/4] 1.99x2 1.99 1.235x2 1.235 1.99x2 1.99

Case 3: W3(X) ≤ 2.12.
If m1 +m2 +m3 +m4 = 0, i.e., no type 1, 2, 3, 4 items in X , then m6 +m7 ≤ 4,

W3(X) = W3,2(X) ≤ 0.26m6 +
0.8m7

3
+ 1.5625(1− 0.352m6 −

m7

9
) < 2.

Else m1 = 1 then mi = 0, where 2 ≤ i ≤ 8,

W3(X) = W3,2(X) ≤ 2.05.

Else m2 = 1. Then no type 1, 3, 4, 5, 6 items in X , m7 +m9 ≤ 5 and m7 ≤ 3. So,
W3(X) = W3,2(X) ≤ 1+ 0.8m7

3 +0.0829m9 +1.235(1−0.652− m7
9 −

m9
16) < 2.12.

Else m3 +m4 = 1. Then no type 1, 2, 3 items in X .

W3(X) ≤ W3,1(X) ≤ 0 + 2.4(1− 0.52) = 1.8.

Improved Online Hypercube Packing 237

Case 4: W4(X) =
∑

p∈X E4,1(p)s(p)2 ≤ 2.141
∑

p∈X s(p)2 ≤ 2.141.
So, P(W) ≤ 2.1439.

Theorem 2. The asymptotic performance ratio of A for cube packing is at most
2.6852.

Proof. For cube packing, we set parameters αi and θi in the following table.

i 1− 4 5 6 7 8 9 10 11 12− 16
αi 0 0 0.12 0.2 0 0.325 0.2096 0.15 0
θi 0 0 7 7 0 19 37 61 0
β3

i 1 8 8 8 27 27 64 125 (i− 6)3

Here we set αi = 0 for 12 ≤ i ≤ 16. So, their weights are defined as 1/β3
i .

We first give two tables and then use them to calculate P(W).

i (ti+1, ti] W1,1(p) E1,1(p) W2,1(p) E2,1(p) W2,2(p) E2,2(p)
1 (0.7, 1] 1 2.9155 1 2.9155 1 2.9155
2 (0.65, 0.7] 1 3.65 1 3.65 1 3.65
3 (0.6, 0.65] 1 4.63 1 4.63 1 4.63
4 (0.5, 0.6] 1 8 0 0 1 8
5 (0.4, 0.5] 1/8 1.9532 1/8 1.9532 1/8 1.9532
6 (0.35, 0.4] 0.11 2.5656 0.1272 2.966 0.1272 2.966
7 (1/3, 0.35] 0.1 2.7 0.1286 3.472 0.1 2.7
8 (0.3, 1/3] 1/27 1.372 1/27 1.372 1/27 1.372
9 (1/4, 0.3] 0.025 1.6 0.04211 2.6948 0.025 1.6
10 (1/5, 1/4] 0.0124 1.55 0.01802 2.252 0.0124 1.55
11 (1/6, 1/5] 0.0068 1.4688 0.0093 2 0.0068 1.4688

12..17 (0, 1/6] 1.59x3 1.59 1.59x3 1.59 1.59x3 1.59

Case 1: W1(X) ≤ 2.6852.
If m1 +m2 +m3 +m4 = 0, i.e., no type 1, 2, 3, 4 items in X , then m6 +m7 ≤ 8,

W1(X) ≤ 0.11m6 + 0.1m7 + 1.96(1− 0.353m6 −m7/27) ≤ 2.3.

Else m1 = 1. Then mi = 0, where 2 ≤ i ≤ 8,

W1(X) ≤ 1 + 1.6(1− 0.73) = 2.0512.

Else m2 = 1. Then no type 1, 3, 4, 5, 6 items in X and m7 ≤ 7,

W1(X) ≤ 1 + 0.1× 7 + 1.6(1− 0.653 − 7/27) ≤ 2.546.

Else m3 = 1. Then no type 1, 2, 4, 5 items in X and m6 +m7 ≤ 7,

W1(X) ≤ 1 + 0.11m6 + 0.1m7 + 1.6(1− 0.63 − 0.353m6 −m7/27) ≤ 2.5646.

Else m4 = 1. Then m1 +m2 +m3 = 0 and m5 +m6 +m7 ≤ 7,

W1(X) ≤ 1 +m5/8 + 0.11m6 + 0.1m7

+1.6(1− 0.53 − 0.43m5 − 0.353m6 −m7/27)
< 2.6852.

The last inequality follows from m7 = 7 and m5 = m6 = 0.

238 X. Han, D. Ye, and Y. Zhou

Case 2: W2(X) ≤ 2.6646.
If m1 +m2 +m3 +m4 = 0, i.e., no type 1, 2, 3, 4 items in X , then m6 +m7 ≤ 8,

W2(X) = W2,2 ≤ 0.1272m6 + 0.1m7 + 1.96(1− 0.353m6 −m7/27) ≤ 2.4.

Else m1 +m2 = 1 . Then no type 1, 4, 5, 6 items in X ,

W2(X) = W2,2(X) = W1(X) ≤ 2.546.

Else m3 = 1. Then no type 1, 2, 4, 5 items in X and m6 +m7 ≤ 7,

W2(X) ≤ 1 + 0.1272m6 + 0.1m7 + 1.6(1− 0.63 − 0.353m6 −m7/27) ≤ 2.6646.

Else m4 = 1. Then no type 1, 2, 3 items in X and m6 +m7 ≤ 7,

W2(X) ≤ W2,1(X) ≤ 0 + 0.1272m6 + 0.1286m7 +
2.6948(1− 0.353m6 −m7/27− 1/8) < 2.5595.

The last inequality holds for m6 = 0 and m7 = 7.

i (ti+1, ti] W3,1(p) E3,1(p) W3,2(p) E3,2(p) W4,1(p) E4,1(p)
1 (0.7, 1] 1 2.9155 1 2.9155 1 2.9155
2 (0.65, 0.7] 1 3.65 1 3.65 0 0
3 (0.6, 0.65] 0 0 1 4.63 0 0
4 (0.5, 0.6] 0 0 1 8 0 0
5 (0.4, 0.5] 1/8 1.9532 1/8 1.9532 1/8 1.9532
6 (0.35, 0.4] 0.1272 2.966 0.1272 2.966 0.1272 2.966
7 (1/3, 0.35] 0.1286 3.472 0.1286 3.472 0.03 0.81
8 (0.3, 1/3] 1/27 1.372 1/27 1.372 1/27 1.372
9 (1/4, 0.3] 0.04211 2.6948 0.025 1.6 0.04211 2.6948
10 (1/5, 1/4] 0.01802 2.252 0.0124 1.55 0.01802 2.252
11 (1/6, 1/5] 0.0093 2 0.0068 1.4688 0.0093 2

12..17 (0, 1/6] 1.59x3 1.59 1.59x3 1.59 1.59x3 1.59

By the similar calculation with Case 1 and Case 2, we have

W3(X) ≤ 2.646 and W4(X) ≤ 2.63.

So, P(W) < 2.6852. (Due to page limination, we skip the details.)

5 Concluding Remarks

In this page, we reduced the gaps between the upper and lower bounds of online
square packing and cube packing. But the gaps are still large. It seems possible
to use computer proof as the one in [14] to get a more precise upper bound. But,
the analysis becomes more complicated and more difficult than the one in [14],
since we are faced to solve a two dimensional knapsack problem, rather than one
dimensional knapsack problem [14]. So, how to reduce the gaps is a challenging
open problem.

Improved Online Hypercube Packing 239

References

1. D.J. Brown, A lower bound for on-line one-dimensional bin packing algorithms,
Techincal report R864, Coordinated Sci. Lab., Urbana, Illinois, 1979.

2. E.G. Coffman, M.R. Garey and D.S. Johnson, Approximation algorithms for
bin packing: a survey. In Approximation Algorithms for NP-hard Problems, D.
Hochbaum, Ed. PWS, Boston, MA, 1997, chapter 2.

3. D. Coppersmith, P. Paghavan, Multidimensional on-line bin packing: Algorithms
and worst case analysis, Oper. Res. Lett. 8:17-20, 1989.

4. J. Csirik, A. van Vliet, An on-line algorithm for multidimensional bin packing,
Oper. Res. Lett. 13: 149-158, 1993.

5. J. Csirik and G.J. Woeginger, Shelf algorithm for on-line strip packing, Information
Processing Letters 63, 171-175, 1997.

6. L. Epstein, R. van Stee, Optimal online bounded space multidimensional packing,
SODA 2004: 214-223.

7. L.Epstein, R. van Stee, Optimal Online Algorithms for Multidimensional Packing
Problems. SIAM J. Computing, 35(2): 431-448, 2005.

8. L.Epstein, R. van Stee, Online square and cube packing, Acta Inf. 41(9): 595-606,
2005.

9. D.S. Johnson, A.J. Demers, J.D. Ullman, M. R. Garey, R. L. Graham, Worst-
Case performance bounds for simple one-dimensional packing algorithms, SIAM
J. Comput. 3(4): 299-325, 1974.

10. F.M. Liang, A lower bound for online bin packing, Information processing letters
10,76-79,1980.

11. C.C. Lee and D.T. Lee, A simple on-line bin-packing algorihtm, J. ACM 32, 562-
572, 1985.

12. F.K. Miyazawa, Y. Wakabayashi, Cube packing, Theor. Comput. Sci. 1-3(297):
355-366, 2003.

13. P.V. Ramanan, D.J. Brown, C.C. Lee, and D. T. Lee, On-line bin packing in linear
Time, J. Algorithms 10, 305-326, 1989.

14. S.S. Seiden, On the online bin packing problem, J. ACM 49, 640-671, 2002.
15. S.S. Seiden, R. van Stee, New bounds for multidimensional packing, Algorithmica

36(3): 261-293, 2003.
16. A. van Vliet, An improved lower bound for on-line bin packing algorithms, Inform.

Process. Lett. 43, 277-284,1992.
17. A.C.-C. Yao, New Algorithms for Bin Packing, J. ACM 27, 207-227, 1980.

Competitive Online Multicommodity Routing

Tobias Harks	, Stefan Heinz, and Marc E. Pfetsch		

Konrad-Zuse-Zentrum für Informationstechnik Berlin,
Takustr. 7, 14195 Berlin, Germany
{harks,heinz,pfetsch}@zib.de

Abstract. In this paper we study online multicommodity minimum cost
routing problems in networks, where commodities have to be routed se-
quentially. The flow of each commodity can be split on several paths.
Arcs are equipped with load dependent price functions defining rout-
ing costs. We discuss a greedy online algorithm that routes each com-
modity by minimizing a convex cost function that only depends on the
demands previously routed. We present a competitive analysis of this
algorithm showing that for affine linear price functions this algorithm
is 4K

2+K
-competitive, where K is the number of commodities. For the

parallel arc case, this algorithm is optimal. Without restrictions on the
price functions and network, no algorithm is competitive. Finally, we in-
vestigate a variant in which the demands have to be routed unsplittably.

1 Introduction

In this work we study the fundamental problem of sequentially routing demands
in a network. We consider dynamic load dependent price functions on links. In
realistic scenarios the online aspect arises due to the fact that by the time of
routing a given demand, future demands are not known. We briefly outline two
examples.

Open Shortest Path First (OSPF) is the most commonly used intra-domain
Internet routing protocol today, see Moy [1]. Here, traffic is routed along short-
est paths from source to destination with respect to weights on the links that
are under the control of network operators. A default weight setting strategy is
to make the weight inversely proportional to the physical link capacity as sug-
gested by Cisco [2]. If the routing weights are interpreted as prices for reserving
capacity on the corresponding link, the OSPF protocol routes demands along
the cheapest path.

Minimum cost routing also arises in an inter-domain Quality of Service (QoS)
market, where multiple service providers offer network resources (capacity) to
enable Internet traffic with specific QoS constraints, see for example Yahaya,
Suda and Harks [3,4]. In such a market, each service provider advertises prices
� Supported by the German research funding agency ’DFG’ under the graduate pro-

gram ’Graduiertenkolleg 621 (MAGSI/Berlin)’.
�� Supported by the DFG Research Center Matheon Mathematics for key technologies

in Berlin.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 240–252, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Competitive Online Multicommodity Routing 241

(weights) for resources that he wants to sell. Buying providers reserve capacity
along the cheapest available path to route demand (coming from own customers)
from source to destination via domains of other providers.

In this paper we investigate the Online Multicommodity Routing Problem
(OnlineMCRP). Here, commodities in a network have to be routed sequen-
tially in an online fashion. The flow for each commodity can be split on several
paths. The cost for each arc is defined by load dependent price functions. As far
as we know, this approach has not been investigated before.

Related Work. Multicommodity routing problems have been studied in the
context of traffic engineering, see Fortz and Thorup [5,6]. There, the goal is
to route given demands subject to capacity constraints in order to minimize a
convex load dependent penalty function. In this setting, a central planer has full
knowledge of all demands, which is not the case in our approach.

Another related line of research is the investigation of efficient routing in
decentralized noncooperative systems. This has been extensively studied using
game theoretic concepts, cf. Roughgarden and Tardos [7], Correa, Schulz, and
Stier Moses [8], and references therein. In this line of research, the efficiency of
Nash equilibria are studied. Hence, rerouting of demands is allowed in this con-
text. In our model, once a routing decision has been made this routing remains
unchanged.

In the online network routing field, mainly call admission control problems
have been considered. An overview article about these problems is given by
Leonardi in [9]. Perhaps closest to our work is the paper by Awerbuch, Azar,
and Plotkin [10], where online routing algorithms are presented to maximize
throughput under the assumption that routings are irrevocable. However, Awer-
buch et al. restrict the analysis to single path routing and present competitive
bounds that depend on the number of nodes in the network.

Contributions. We show that no online algorithm for the OnlineMCRP is
competitive if the price functions and network are not restricted. However, for
affine linear price functions we investigate a greedy online algorithm, called Seq,
and show that this algorithm is 4K

2+K -competitive, where K is the number of
commodities. Furthermore, we prove in this case a lower bound of 4

3 on the com-
petitive ratio for any deterministic online algorithm. If the network only consists
of parallel arcs, Seq is optimal. We also study a variant in which the demands
have to be routed unsplittably. There, we prove that the offline problem is NP-
hard, show that in general no competitive deterministic online algorithm exists,
and present a lower bound of 2 on the competitive ratio for any deterministic
online algorithm if the price functions are linear.

2 Problem Description

An instance of the Online Multicommodity Routing Problem (OnlineMCRP)
consists of a directed network D = (V,A) and nondecreasing continuous price

242 T. Harks, S. Heinz, and M.E. Pfetsch

functions pa : + → + for each link a ∈ A. These functions define the
price of reserving capacity on a link depending on the current load, see be-
low. Furthermore, a sequence σ = 1, . . . ,K of commodities must be routed one
after the other. We assume that K ≥ 2 and denote the set of commodities by
[K] := {1, . . . ,K}. The routing decision for commodity k is online, that is, it
only depends on the routings of commodities 1, . . . , k − 1. Once a commodity
has been routed it remains unchanged. Each commodity k ∈ [K] has a demand
dk > 0 that is to be routed from its source sk ∈ V to its destination tk ∈ V after
it arises.

A routing assignment, or flow, for commodity k ∈ [K] is a nonnegative vector
fk ∈ A

+. This flow is feasible if for all v ∈ V∑
a∈δ+(v)

fk
a −

∑
a∈δ−(v)

fk
a = γ(v), (1)

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; further-
more, γ(v) = dk if v = sk, γ(v) = −dk if v = tk, and γ(v) = 0 otherwise. Note
that splitting of demands is allowed.

Alternatively, one can consider a path flow for a commodity k ∈ [K]. Let Pk

be the set of all paths from sk to tk in D. A path flow is a nonnegative vector
(fk

P)P∈Pk
. The corresponding flow on link a ∈ A for commodity k ∈ [K] is then

fk
a :=

∑
P�a

fk
P .

We define Fk with k ∈ [K] to be the set of vectors (f1, . . . ,fk) such that f i

is a feasible flow for commodity i for i = 1, . . . , k. If (f1, . . . ,fk) ∈ Fk, we say
that it is feasible for commodities 1, . . . , k. The entire flow for a sequence of
commodities is denoted by f = (f1, . . . ,fK). Furthermore, the cost of a flow on
link a ∈ A of commodity k is defined by

Ck
a (f1

a , . . . , f
k
a) =

fk
a∫

0

pa

(k−1∑
i=1

f i
a + z

)
dz. (2)

This expression can be obtained as the cost of a shortest path routing, where
the demand is split into infinitesimal pieces that are routed consecutively. Hence,
the integral represents the fact that an infinitesimal amount of flow increases the
price for each consecutive piece. Note that Ck

a (·) is a convex function.
The cost for fk is

Ck(fk) :=
∑
a∈A

Ck
a (f1

a , . . . , f
k
a), (3)

and the total cost is defined by

C(f) =
K∑

k=1

Ck(fk).

Competitive Online Multicommodity Routing 243

In this paper we study the greedy online algorithm Seq that sequentially
routes the requested demands with minimum cost. To this end, it solves for
every k ∈ [K] the following convex program

min Ck(fk)

s.t.
∑

a∈δ+(v)

fk
a −

∑
a∈δ−(v)

fk
a = γ(v) ∀ v ∈ V (4)

fk
a ≥ 0 ∀ a ∈ A,

where the vectors f1, . . . ,fk−1 are fixed by solving the first k−1 problems. This
problem can be efficiently solved within arbitrary precision in polynomial time
(see Grötschel, Lovász, and Schrijver [11]). Note that Seq always produces a
feasible flow.

Using the relation
∂Ck

∂fk
a

(fk) = pa

(k∑
i=1

f i
a

)
,

we state in the following lemma necessary and sufficient optimality conditions
of the above K problems.

Lemma 1. A feasible flow f = (f1, . . . ,fK) for the sequence σ = 1, . . . ,K
is generated by Seq if and only if for all k ∈ [K] the following two equivalent
conditions are satisfied:

i)
∑
a∈A

pa

(k∑
i=1

f i
a

)
(fk

a − xk
a) ≤ 0 for all feasible flows xk

for commodity k
(5)

ii)
∑
a∈P

pa

(k∑
i=1

f i
a

)
≤
∑
a∈Q

pa

(k∑
i=1

f i
a

) for all P,Q ∈ Pk,
P flow carrying w.r.t. fk. (6)

The proof is based on the first order optimality conditions and the convexity
of Ck(·), see Dafermos and Sparrow [12].

For the sequence σ = 1, . . . ,K, an optimal offline flow is given by a solution f	

of the following convex optimization problem:

min C(f)

s.t.
∑

a∈δ+(v)

fk
a −

∑
a∈δ−(v)

fk
a = γ(v) ∀ v ∈ V, k ∈ K (7)

fk
a ≥ 0 ∀ a ∈ A, k ∈ K,

where γ(v) is defined as in (1). We denote by Opt(σ) the optimal value C(f)
of the above convex problem.

Using the relation
∂C

∂fk
a

(f) = pa

(K∑
i=1

f i
a

)
,

244 T. Harks, S. Heinz, and M.E. Pfetsch

the necessary and sufficient optimality conditions of the above problem are given
in the following lemma.

Lemma 2. A feasible flow f = (f1, . . . ,fK) for the sequence σ = 1, . . . ,K
is offline optimal if and only if for all k ∈ [K] the following two equivalent
conditions are satisfied:

i)
∑
a∈A

pa

(K∑
i=1

f i
a

)
(fk

a − xk
a) ≤ 0 for all feasible flows xk

for commodity k
(8)

ii)
∑
a∈P

pa

(K∑
i=1

f i
a

)
≤
∑
a∈Q

pa

(K∑
i=1

f i
a

) for all P,Q ∈ Pk,
P flow carrying w.r.t. fk. (9)

Note that the only difference to the optimality conditions in Lemma 1 is the
summation in the price function up to commodity K instead of k. This reflects
the offline aspect since all demands are known. For the proof see again Dafermos
and Sparrow [12].

For a given sequence of commodities σ = 1, . . . ,K and a solution f produced
by an online algorithm Alg for σ we denote by Alg(σ) = C(f) its cost. The
online algorithm Alg is called c-competitive if the cost of Alg is never larger
than c times the cost of an optimal offline solution. The competitive ratio of Alg
is the infimum over all c ≥ 1 such that Alg is c-competitive, see Borodin and
El-Yaniv [13].

Remark 1. If the price functions pa(z) are constant for every arc a ∈ A, the
algorithm Seq is optimal for the offline problem. This holds because in this
case the routing problems are independent from each other. In fact, each rout-
ing decision is just a shortest path problem with respect to the constant costs.
Furthermore, the offline problem is a min-cost flow problem without capacity
constraints. Hence, both problems can be solved more efficiently than in the
general case.

Clearly, also in the case K = 1, the competitive ratio of Seq is 1.

3 Competitive Analysis of Seq

First, we show that there exists, in general, no competitive deterministic online
algorithm.

Proposition 1. If neither the network nor the price functions are restricted,
there exists no competitive deterministic online algorithm for the OnlineMCRP.

Proof. Consider the network depicted in Figure 1. For all arcs a in the network,
the price function is pa(z) = m · zm−1 with m > 2. Let Alg be an arbitrary
deterministic online algorithm. The first commodity has demand d1 = 1 and
has to be routed from node s1 = 1 to node t1 = 4. There are two possible
paths for this commodity: path P1 = (1, 2, 4) and path P2 = (1, 3, 4). Because

Competitive Online Multicommodity Routing 245

1

2

3

4

Fig. 1. Graph construction for the proofs of Proposition 1, Theorem 6, and Theorem 7

of symmetry, we can assume that Alg sends a flow of 1
2 ≤ α ≤ 1 over path P1

and (1−α) along path P2. Now commodity 2 arises with demand d2 = 1, source
s2 = 1, and target t2 = 2. For this demand there exists only the single path
P3 = (1, 2). For this sequence σ we have the total cost

Alg(σ) = 2 · αm + 2 · (1− α)m +
∫ 1

0

m(α+ z)m−1 dz

= 2 · αm + 2 · (1− α)m + (α+ 1)m − αm.

Routing the first commodity completely over path P2 and the second over
path P3 leads to the total cost 2 · 1m + 1m = 3 ≥ Opt(σ). Letting m tend
to infinity shows that in this case Alg is not competitive. ��

Proposition 1 shows that to obtain competitive results, the network or the price
functions have to be restricted.

3.1 Affine Linear Price Functions

Now we will show that if the price functions are affine, Seq is 4K
2+K -competitive.

For affine price functions pa(z) = qa · z + ra with qa ≥ 0, ra ≥ 0 (a ∈ A), we
have for a flow (f1, . . . ,fk) ∈ Fk

Ck
a (f1, . . . ,fk) = qa

(k−1∑
i=1

f i
a + 1

2fk
a

)
fk

a + ra fk
a .

It follows from the optimality conditions (5) that if (f1, . . . ,fk) is generated
by Seq, we have ∑

a

(
qa

k∑
i=1

f i
a + ra

)
(fk

a − xk
a) ≤ 0, (10)

for all feasible flows xk for commodity k.

Theorem 1. If the price functions of the OnlineMCRP are affine, the online
algorithm Seq is 4K

2+K -competitive.

246 T. Harks, S. Heinz, and M.E. Pfetsch

Proof. Let f be the flow generated by Seq for the sequence σ and let x be any
other feasible flow for σ. We start with the following inequality:

0 ≤
(

1
2

K∑
k=1

fk
a −

K∑
k=1

xk
a

)2

= 1
4

K∑
k=1

K∑
i=1

f i
a fk

a −
K∑

k=1

K∑
i=1

f i
a x

k
a +

K∑
k=1

K∑
i=1

xi
a x

k
a.

Using the relation
K∑

k=1

K∑
i=1

f i
a fk

a = 2
K∑

k=1

(k−1∑
i=1

f i
a + 1

2fk
a

)
fk

a , (11)

for the first and last sum we obtain:

0 ≤ 1
2

K∑
k=1

(k−1∑
i=1

f i
a + 1

2fk
a

)
fk

a −
K∑

k=1

K∑
i=1

f i
a x

k
a + 2

K∑
k=1

(k−1∑
i=1

xi
a + 1

2x
k
a

)
xk

a.

Multiplying with qa and adding over all arcs yields:

0 ≤
∑
a∈A

qa

(
1
2

K∑
k=1

(k−1∑
i=1

f i
a + 1

2fk
a

)
fk

a −
K∑

k=1

K∑
i=1

f i
a x

k
a + 2

K∑
k=1

(k−1∑
i=1

xi
a + 1

2x
k
a

)
xk

a

)
.

Now we add the inequality

0 ≤
∑
a∈A

K∑
k=1

(
1
2ra fk

a − ra xk
a + 2ra xk

a

)
− 1

K

∑
a∈A

K∑
k=1

ra fk
a ,

which holds because K ≥ 2. This leads to:

0 ≤ 1
2 C(f)−

∑
a∈A

K∑
k=1

(
qa

K∑
i=1

f i
a + ra

)
xk

a + 2C(x)− 1
K

∑
a∈A

K∑
k=1

ra fk
a .

Dropping part of the second term and applying (10) yields:

0 ≤ 1
2 C(f)−

∑
a∈A

K∑
k=1

(
qa

k∑
i=1

f i
a + ra

)
fk

a + 2C(x)− 1
K

∑
a∈A

K∑
k=1

ra fk
a

= − 1
2 C(f) + 2C(x)− 1

2

∑
a∈A

qa

K∑
k=1

fk
a fk

a − 1
K

∑
a∈A

K∑
k=1

ra fk
a .

Hence,

C(f) ≤ 4C(x)−
∑
a∈A

qa

K∑
k=1

fk
a fk

a − 2
K

∑
a∈A

K∑
k=1

ra fk
a

≤ 4C(x)− 1
K

∑
a∈A

qa

(K∑
k=1

fk
a

)2

− 2
K

∑
a∈A

K∑
k=1

ra fk
a

= 4C(x)− 2
K

∑
a∈A

qa

K∑
k=1

(k−1∑
i=1

fk
a + 1

2fk
a

)
fk

a − 2
K

∑
a∈A

K∑
k=1

ra fk
a ,

Competitive Online Multicommodity Routing 247

1

2

3

4

5

Fig. 2. Graph construction for the proof of Theorem 2

where the second inequality follows from the inequality of Cauchy-Schwarz and
the last equation follows by (11). Therefore, we get C(f) ≤ 4C(x) − 2

KC(f),
from which the claim follows. ��

We do not know whether this result is tight. The best known lower bound is the
following.

Theorem 2. In case of linear cost functions no deterministic online algorithm
for the OnlineMCRP is c-competitive for any c < 4

3 .

Proof. Consider the network displayed in Figure 2. Each arc a leaving node 1
has the same price function pa(z) = 4 z. All the other arcs (leading to node 5)
have price function pa(z) = 0. Let Alg be an arbitrary deterministic online algo-
rithm. The first commodity has demand 1, which has to be routed from s1 = 1 to
t1 = 5.

Assume the algorithm behaves like Seq. This means that the demand gets
evenly divided into three pieces: one third is routed over path P1 = (1, 2, 5),
another over path P2 = (1, 3, 5), and the final third over path P3 = (1, 4, 5).
We then reveal commodity 2 with demand 1 between nodes 1 and 2. For this
commodity there only exists a single path P4 = (1, 2). Therefore, the cost of
Alg for this sequence σ is:

Alg(σ) = Seq(σ) = 3 · 4 ·
(

1
2 ·

1
3

)
· 1

3 + 4 ·
(

1
3 + 1

2 · 1
)
· 1 = 4.

An optimal offline solution is to route half of commodity 1 over path P2, the
other half over path P3, and commodity 2 along P4. Therefore,

Opt(σ) = 2 · 4 ·
(

1
2 ·

1
2

)
· 1

2 + 4 ·
(

1
2 · 1
)
· 1 = 3.

This leads to

Alg(σ)
Opt(σ)

=
4
3
.

If Alg does not behave like Seq for the first commodity, we can assume by
symmetry that Alg routes α > 1

3 over path P1. Hence, a demand of 1−α has to
be routed over path P2 and P3. The optimal way to do this is to route (1−α)/2

248 T. Harks, S. Heinz, and M.E. Pfetsch

s

n

1

t

2

...

Fig. 3. Graph construction for the proof of Theorem 3

over each path. We then present commodity 2 as above. The cost of Alg for
this sequence σ is

Alg(σ) ≥ 4 ·
(

1
2 · α
)
· α+ 2 · 4 ·

(
1
2 ·

(1−α)
2

)
· (1−α)

2 + 4 ·
(
α+ 1

2 · 1
)
· 1 > 4.

since α > 1
3 . Since Opt(σ) = 3, we have

Alg(σ)
Opt(σ)

>
4
3
.

Therefore, Alg cannot have a competitive ratio less than 4
3 . ��

As we show next, possible “good” algorithms for the OnlineMCRP have to
split the demands.

Theorem 3. A deterministic online algorithm for the OnlineMCRP that
routes all demands unsplittably is not competitive, even for linear cost functions.

Proof. Consider the network shown in Figure 3. This network contains n + 2
nodes and n paths from node s to node t. The price functions are pa(z) = 2 z for
all arcs a. Let Alg be an arbitrary deterministic online algorithm which does not
split demands. We consider a single commodity with demand 1 between nodes s
and t. Since Alg does not split, the cost of its routing is independent from the
chosen path:

Alg(σ) = 2 · (1
2 · 1) · 1 + 2 · (1

2 · 1) · 1 = 2.

An optimal solution splits the demand into n evenly divided pieces and sends
each piece over a different path. This leads to an optimal cost of

Opt(σ) = n
(
2 · (1

2 ·
1
n) · 1

n + 2 · (1
2 ·

1
n) · 1

n

)
= n · 2 · (1

n)2 = 2
n .

Therefore, the competitive ratio of Alg is not smaller than n. Since this holds
for all n ∈ , Alg is not competitive. ��

In Section 4, we further investigate the problem variant, where splitting demand
is not allowed.

Competitive Online Multicommodity Routing 249

3.2 Parallel Arc Case

We now consider the parallel arc case, that is, D consists of two nodes s and t
and arcs from s to t only. We allow for arbitrary nondecreasing continuous price
functions. Recall from Lemma 1 that f is generated by Seq for the sequence
σ = 1, . . . ,K if and only if for all a ∈ A, k ∈ [K] with fk

a > 0:

pa

(k∑
i=1

f i
a

)
≤ pâ

(k∑
i=1

f i
â

)
for all â ∈ A. (12)

By Lemma 2, a flow x solves the offline problem (7) if and only if we have for
all a ∈ A with

∑K
k=1 x

k
a > 0:

pa

(K∑
k=1

xk
a

)
≤ pâ

(K∑
k=1

xk
â

)
for all â ∈ A. (13)

Lemma 3. Given the sequence σ = 1, . . . ,K, let f = (f1, . . . ,fK) be the flow
generated by Seq for this sequence. Define A+

k := {a ∈ A : fk
a > 0} for k ∈ [K].

Then,

pa

(k+1∑
i=1

f i
a

)
≤ pâ

(k+1∑
i=1

f i
â

)
, ∀ a ∈ A+

k , â ∈ A, k = 1, . . . ,K − 1.

Proof. Let a ∈ A+
k . First assume that a ∈ A+

k+1. Then by the optimality condi-
tions (12) for (f1, . . . ,fk+1) the claim follows.

Now assume a /∈ A+
k+1. Then we have for all â ∈ A:

pa

(k+1∑
i=1

f i
a

)
= pa

(k∑
i=1

f i
a

)
≤ pâ

(k∑
i=1

f i
â

)
≤ pâ

(k+1∑
k=1

f i
â

)
,

where the first inequality follows from the optimality condition for the flow
(f1, . . . ,fk+1) and the second follows from the assumption that the price func-
tions are nondecreasing. ��
Theorem 4. Consider the sequence σ = 1, . . . ,K in the parallel arcs case. Let f
be the flow generated by Seq for σ. Then, C(f) ≤ C(x) for any feasible flow x
for σ, this means, f is also an offline optimum.

Proof. For the last commodity K, we have the following optimality condition:

pa

(K∑
i=1

f i
a

)
≤ pâ

(K∑
k=1

f i
â

)
, ∀ a ∈ A+

K , â ∈ A. (14)

Using Lemma 3 for k = K − 1 we obtain:

pa

(K∑
i=1

f i
a

)
≤ pâ

(K∑
k=1

f i
â

)
, ∀ a ∈ A+

K−1, â ∈ A.

Applying Lemma 3 iteratively K − 1 times together with (14) yields the opti-
mality conditions (13) for the offline optimum. ��

250 T. Harks, S. Heinz, and M.E. Pfetsch

sK

...

s2

s1

uN

...

u1

t

Fig. 4. Construction for the proof of Theorem 5

4 Unsplittable Routings

In this section we study the variant of the OnlineMCRP in which demands are
not allowed to be split, i.e., unsplittable routings. Such a restriction often occurs
in practice, for instance in single path routing problems in telecommunication
networks. It is possible to formulate a mixed integer convex program for this
setting. In contrast to the splittable case, however, the offline problem is NP-
hard in this case.

Theorem 5. The offline problem for the unsplittable variant of the Online-
MCRP is NP-hard, even when the price functions are linear.

Proof. Consider an instance of the minimum sum of squares problem, which is
NP-complete in the strong sense (see Garey and Johnson [14]). Here, one is
given nonnegative integers d1, . . . , dK and positive integers N ≤ K and J . The
question is whether there exists a partition of [K] into N sets A1, . . . ,AN such
that

N∑
i=1

(∑
k∈Ai

dk

)2

≤ J?

For the reduction to the offline problem, we construct a directed graph D with
nodes {s1, . . . , sK , u1, . . . , uN , t} and the following arcs: For each k ∈ [K] and
i ∈ [N] we have an arc (sk, ui) with price function 0. For each i ∈ [N] we add
an arc a = (ui, t) with price function pa(z) = 2 z; see Figure 4. Furthermore,
for k ∈ [K] there are demands dk between sk and t.

We now claim that there exists an unsplittable solution to the offline problem
of value at most J if and only if the answer to the minimum sum of squares
problem is positive. To see this, first assume that A1, . . . ,AN is the wanted
partition. Then if k ∈ Ai, we route commodity k along ui to t. Using (11), we
obtain the following costs:

2
N∑

i=1

∑
k∈Ai

(∑
j∈Ai

j<k

dj + 1
2dk

)
dk =

N∑
i=1

∑
k∈Ai

∑
j∈Ai

dk dj =
N∑

i=1

(∑
k∈Ai

dk

)2

.

Competitive Online Multicommodity Routing 251

This proves the forward direction of the claim. Conversely, assume that there
exists an unsplittable flow of value J . For i = 1, . . . ,N , let Ai be the set of
indices k whose corresponding demands are routed over the arc (ui, t). Again the
cost is given as above, which shows that there exits a solution to the minimum
sum of squares problem. ��

When the price functions are constant, both the unsplittable variants of (4)
and (7) are min-cost flow problems and hence, polynomial time solvable.

Theorem 6. In general there exists no competitive deterministic online algo-
rithm for the unsplittable variant of the OnlineMCRP.

Proof. Given the network shown in Figure 1, where each arc a has a price func-
tion pa(z) = m · zm−1 with m > 2. Let Alg be an arbitrary deterministic online
algorithm for the considered problem. First, we reveal a commodity with de-
mand d1 = 1, source s1 = 1, and target t1 = 4. Without loss of generality, we
can assume that Alg uses path P1 = (1, 2, 4) to route this demand. Commod-
ity 2 is released with demand d2 = 1, source s2 = 1, and target t2 = 2. For this
commodity there only exists a single path P2 = (1, 2). Hence, for this sequence σ,
Alg yields the cost

Alg(σ) = 2 · 1m +
∫ 1

0

m(1 + z)m−1 dz = 2 + (1 + 1)m − 1m = 1 + 2m.

The optimal cost is Opt(σ) = 3 which is achieved by routing commodity 1 over
path P3 = (1, 3, 4) and commodity 2 along path P2. Therefore, for m going to
infinity it follows that Alg is not competitive. ��

Theorem 7. If we consider only linear price functions, no deterministic online
algorithm has a competitive ratio less than 2 for the unsplittable variant of the
OnlineMCRP.

Proof. Consider the network shown in Figure 1, where each link a is equipped
with the same price function pa(z) = 2 z. Let Alg be an arbitrary deterministic
online algorithm. We first reveal commodity 1 with demand d1 = 1, source
s1 = 1, and target t1 = 4. This request can be routed over path P1 = (1, 2, 4)
or over path P2 = (1, 3, 4). W.l.o.g. assume that Alg chooses path P1. Now we
release two more commodities from node 1 to 2 and from node 2 to 4, respectively.
Both have a demand of 1. Since for each of the last two commodities there exists
only a single path, the assignment by Alg for this sequence σ leads to a cost of

Alg(σ) = 2 · 2 · (1
2 · 1) · 1 + 2 · (1 + 1

2 · 1) · 1 + 2 · (1 + 1
2 · 1) · 1 = 8.

An optimal routing is achieved by routing commodity 1 along path P2, and com-
modity 2 and 3 over their single paths. Since the optimal cost for σ is Opt(σ) = 4,
the competitive ratio of Alg is at least 2. ��

252 T. Harks, S. Heinz, and M.E. Pfetsch

5 Final Comments and Future Research

In practice, routings have to consider capacities, which we ignored in our ap-
proach. In this case, however, one can easily construct examples in which any
online algorithm does not even produce a feasible solution. Further requirements
in practice include path length restrictions and survivability issues.

In the future, we plan to investigate the competitiveness of Seq for nonlinear
prices functions. It is also an open issue whether the competitiveness bound in
Theorem 1 is tight and whether the optimality results in Theorem 4 can be
extended.

References

1. Moy, J.: OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley (1999)
2. Cisco: OSPF Design Guide. Documentation available at

http://www.cisco.com/en/US/tech/tk365 (2006)
3. Yahaya, A., Suda, T.: iREX: Inter-domain QoS Automation using Economics. In:

Proceedings of IEEE CCNC. (2006)
4. Yahaya, A., Harks, T., Suda, T.: iREX: Efficient Inter-domain QoS Automation

using Economics. In: Proceedings of IEEE Globecom. (2006)
5. Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS weights in a changing world. IEEE

JSAC 20 (2002) 756–767
6. Fortz, B., Thorup, M.: Increasing internet capacity using local search. Computa-

tional Optimization and Applications 29 (2004) 13–48
7. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49

(2002) 236–259
8. Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Selfish routing in capacitated net-

works. Math. Oper. Res. 29 (2004) 961–976
9. Fiat, A., Woeginger, G.J., eds.: Online Algorithms: The State of the Art. Volume

1442 of Lecture Notes in Computer Science. Springer (1998)
10. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive on-line routing. In:

34th Annual Symposium on Foundations of Computer Science (FOCS) 1993, Palo
Alto, IEEE (1993) 32–40

11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. 2nd edn. Volume 2 of Algorithms and Combinatorics. Springer-
Verlag, Heidelberg (1993)

12. Dafermos, S., Sparrow, F.: The traffic assignment problem for a general network.
J. Res. Natl. Bur. Stand., Sect. B 73 (1969) 91–118

13. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

The k-Allocation Problem and Its Variants

Dorit S. Hochbaum1,	 and Asaf Levin2

1 Department of Industrial Engineering and Operations Research and Walter A. Haas
School of Business, University of California, Berkeley

hochbaum@ieor.berkeley.edu
2 Department of Statistics, The Hebrew University Jerusalem, Israel

levinas@mscc.huji.ac.il

Abstract. In the process of reviewing and ranking projects by a group
of reviewers, each reviewer is assumed to review a partial list of projects,
up to k projects. Each individual reviewer then ranks and compares
all pairs of k projects. The k-allocation problem is to determine the
allocation of up to k projects to each reviewer within the expertise set of
the reviewer so that the resulting union of reviewed projects has certain
desirable properties. One property of the k-allocation is to have all pairs
of projects compared by at least one reviewer. This we call the k-complete
problem.

In cases when the property of k-complete cannot be achieved, one
might settle for other properties. One such basic requirement is that
each pair of projects is comparable via a ranking path which is a se-
quence of pairwise rankings of projects implying a comparison of all
pairs on the path. A k-allocation with a ranking path between each pair
is the connectivity-k-aloc. Since the robustness of relative comparisons
deteriorates with the length of the ranking path, another property is
that between each pair of projects there will be at least one ranking
path that has at most two hops or q hops for fixed values of q. Another
property that increases robustness of the ranking is to find a k-allocation
so there are at least p disjoint ranking paths between each pair.

We model all these problems as graph problems and show that the
connectivity-k-aloc problem is polynomially solvable using matroid
intersection, the k-complete problem is NP-hard unless k = 2, and all
other considered variants of the k-allocation properties problem are NP-
complete for all values of k ≥ 2. We provide approximation algorithms
for an optimization problem related to the k-complete problem.

Keywords: Approximation algorithms, allocation problem, maximum
coverage problem.

1 Introduction

In a typical group decision making scenario, a group of individuals rank a set of
projects. In the group decision making setup discussed here the total number of
� Research supported in part by NSF awards No. DMI-0085690 and DMI-0084857.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 253–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

254 D.S. Hochbaum and A. Levin

projects n is too large to be assigned to each reviewer. Moreover, each reviewer
has his/her own expertise set and the allocated projects must lie within the
expertise set. Therefore, each reviewer reviews a partial list of projects that
includes up to k projects in order to balance the work load. The allocation of up
to k projects per reviewer within their expertise set is said to be a k-allocation.

One major challenge is to come up with an aggregate ranking that reflects the
opinions of all reviewers and is fair and representative. There is a large body of
literature that address this challenge reviewed in [19] (see also Kemeny and Snell
[23], Brans and Vincke [4], Bartholdi, Tovey and Trick [3], Keener [22], Fuller
and Carlsson [14], and Fernandez and Olemdo [12]). The aggregate ranking is
affected by the assignment of projects to individual reviewers. For example, an
assignment whereby one sub-group of reviewers evaluates one subset of projects,
and the remaining reviewers evaluate the remaining projects, renders an overall
ranking impossible as the two subsets of projects are not comparable. In spite
of its importance, the allocation of projects and its impact on the quality of
the resulting aggregate ranking is an aspect of group decision often overlooked.
Cook et al. [8] are the only researchers that have explicitly addressed this issue.

Our purpose here is to address the allocation of projects to reviewers. In a
typical scenario the reviewing work has to be allocated to different reviewers in
such a way that the subset of projects allocated to each reviewer is contained in
their expertise set and the number of projects allocated to each reviewer does
not exceed k. This is for instance the case in NSF review panels. We study in the
full version an extension of this model where the number of projects assigned
reviewer j depends on the reviewer and is equal kj .

There are a number of properties that might be associated with the allocation
process. At the most basic level it is required that each project is reviewed by at
least one reviewer. A much stronger requirement is that each pair of projects is
evaluated and compared by at least one reviewer. Other types of properties are
elaborated on below.

A convenient formalism for the problems and the associated models is as
graph representation. The input to the problem is an undirected complete graph
G = (V,E) defined on the set of projects V and all possible pairs (edges) E, an
integer number k and a collection of node subsets representing the expertise set
of each of L reviewers, S1, . . . , SL ⊆ V . In order to maintain a reasonable and
balanced workload, each reviewer is assigned at most k projects out of the set of
possible projects, Sj . So a feasible allocation consists, for each j ∈ {1, 2, . . . , L},
of a subset Vj ⊆ Sj such that |Vj | ≤ min{|Sj|, k}. Each reviewer is able to make
a direct comparison between each pair of projects he/she reviews. The set of
pairs compared by each reviewer forms a clique (a complete subgraph) of size
|Vj |, CVj (i.e., CVj is the edge set of a clique over the node set Vj). For a given
feasible allocation, the set of covered projects is ∪L

j=1Vj , and the set of compared
project pairs is ∪L

j=1CVj . The properties of the graph of the edges covered by
this union of cliques are closely related to the quality of the ranking decision
that can be achieved.

The k-Allocation Problem and Its Variants 255

Let the review graph of covered projects and compared project pairs be GR =
(V R, ER) where V R = ∪L

j=1Vj and ER = ∪L
j=1CVj . The graph GR is a multi-

graph – that is, there could be multiple edges between some pairs of nodes
(because more than one reviewer reviews this pair). A pair of projects i, j ∈ V R

is said to be directly compared if edge [i, j] ∈ ER. For a directly compared pair
there is input from at least one reviewer on the extent of preference of one project
to the other. This relative rank comparison is typically expressed in an additive
form or in a multiplicative form. A detailed discussion on intensity of prefer-
ences and the additive versus the multiplicative forms of preferences is provided
in [19]. We will use throughout the additive form in which pij expresses by how
much the rank of i exceeds the rank of j . So pji = −pij and the magnitude of
pij is the intensity of the preference of i to j. Each (undirected) edge [i, j] in the
graph GR is formed of a pair of (directed) arcs (i, j), (j, i) with the associated
values pij and pji.

Although not all pairs may be directly compared by a given allocation, we
can deduce a relative ranking of two projects i and j if there exists a sequence
of directly compared pairs: [i, i1], [i1, i2], . . . , [ip−1, j] ∈ ER. Such sequence cor-
responds to a path in the graph GR and the implied ranking of this path is
pij =

∑p−1
q=0 piq ,iq+1 where i = i0, j = ip. We call this path a ranking path of

length p. A direct comparison is then a ranking path of length 1. Since the process
of evaluating projects and comparing them is not accurate, an implied ranking
by a long path may be impacted by cumulative errors in the comparisons. This
effect may be mitigated by multiple ranking paths between given pairs or by
having the ranking paths of bounded length. The presence of multiple ranking
paths between all pairs correspond to the increased edge, or node, connectivity
of the review graph.

As an illustration of these concepts consider the graph GR in Figure 1. In this
graph we take k = 2, and therefore each reviewer reviews only a pair of projects.
The endpoints of each edge form the allocation to one reviewer. The intensities of
the preferences are given as pij for i < j. In this graph project 1 and 2 are reviewed
by two different reviewers. There are four implied ranking paths between projects
1 and 5 of intensities 2, 4, .5 and −2. Among those the value .5 is the intensity of
a direct comparison.

Fig. 1. An illustration review graph GR. The numbers along the edges are the intensity
pij for i < j.

256 D.S. Hochbaum and A. Levin

Preliminaries and notations. For a graph H we denote by nH and mH the
number of nodes and edges, respectively, in H . For an integer �, an �-subset is a
subset of � nodes.

The standard definitions of edge-connectivity and node-connectivity are as
follows: A connected graph H = (U, F) is p-edge connected if the removal of
up to p − 1 edges from F results in a connected graph. A connected graph
H = (U, F) is p-node connected if the removal of up to p − 1 nodes from U
results in a connected graph. We also define a new connectivity measure of the
review graph that we call reviewer-connectivity defined as follows: A review graph
GR is a p-reviewer connected if the removal of all the edges corresponding to at
most p− 1 reviewers from GR results in a connected graph. We say that a pair
of projects has p reviewer disjoint ranking paths between them, if the removal
of at most p − 1 reviewers from the review graph keep the two projects in the
same connected component of the resulting graph.

A polynomial time algorithm A for a minimization problem (maximization
problem) is a ρ-approximation algorithm if it always returns a feasible solution
whose objective value is at most (at least) ρ times the optimum.

A list of properties. We now list a set of properties for a desirable allocation
of projects.

1. A basic requirement is the ability to compare each pair of projects once
the review process is done. To that end we require that every pair of projects is
comparable via a ranking path. In terms of the review graph GR this goal is to
find an allocation so that GR is connected. The connectivity-k-aloc problem
is to find a feasible allocation so that GR is connected.

2. If an appropriate allocation exists, then it is desirable that all pairs of
projects should be directly comparable. Cook et al. [8] recently studied the
problem of maximizing the number of directly comparable projects pairs. The
problem is therefore to determine the subsets Vj so that the union of the edges
in the complete graphs (or cliques) induced on Vj , CVj , |

⋃L
j=1 CVj |, is maximum.

The goal in the max k-complete coverage problem is to select sets Vj ⊆ Sj

of size at most k, that maximize the number of edges, |
⋃L

j=1 CVj ∩ E|. We
call this problem the max k-complete coverage problem. The k-complete
problem is the decision problem of deciding whether a given complete graph
G has an optimal solution of the max k-complete coverage problem that
equals the number of edges in G,

(
nG

2

)
. So the max k-complete coverage

problem is a more general problem than the k-complete problem, in that it
is an optimization problem, rather than a decision problem and in that the
problem is defined on an undirected graph G = (V,E) which is not necessarily
complete.

3. p-edge connectivity: In order to increase the reliability of the implied
rankings it is desirable that there will be more than a single ranking path between
each pair. To that end we require that there are at least p edge disjoint ranking
paths in GR between each pair of projects. I.e., the removal of at most p − 1
pairwise comparisons by a given reviewer results a connected review graph. In

The k-Allocation Problem and Its Variants 257

the example in Figure 1 there are four ranking paths between 1 and 5 with
only three of them edge-disjoint. In this graph nodes 3 and 4 have only two
edge disjoint paths between them. So this allocation is a solution to the p = 2
edge disjoint requirement. The second review graph shown in Figure 2 is 3-edge
connected. The associated problem is to maximize the number of pairs of projects
that have at least p edge disjoint ranking paths between them. This associated
problem is called the (k, p)-edge connectivity allocation problem denoted
as (k, p)− ECon.

4. p-reviewer connectivity: Similarly to the p-edge connectivity problem,
in order to increase the reliability of the implied rankings, we ask that that the
review graph will be p reviewer connected. I.e., the removal of at most p − 1
reviewers results in a connected review graph. The motivation for studying this
problem is that the implied rankings of some pairs depend on very few reviewers
and this situation can skew the results. The associated problem is to maximize
the number of pairs of projects that have at least p reviewer disjoint ranking
paths between them. This associated problem is called the (k, p)-reviewer con-
nectivity allocation problem denoted as (k, p)−RCon. We note that when
k = 2 the (2, p)-ECon and the (2, p)-RCon problems are equivalent problems.
However, for larger values of k, the notion of reviewer connectivity is different
from that of edge connectivity.

The 2-reviewer connectivity augmentation problem is the associated
optimization problem defined as follows. The input is a feasible solution to the
connectivity-k-aloc problem, and integer numbers q and k ≥ 2. The goal is
to augment the solution to the connectivity-k-aloc problem using at most q
additional reviewers, where each of these has an expertise set equals to the set
of all projects and we can assign at most k projects for each additional reviewer.
The goal is to maximize the number of pairs of projects such that the resulting
review graph (constructed by adding the q additional reviewers to the solution
of the connectivity-k-aloc problem) has two reviewer-disjoint paths between
them. The motivation for studying this problem is the fact that in some cases
there are few reviewers that can review the whole set of projects (these reviewers
might be the panel members) though their expertise level in each subject is
smaller than the one of the regular reviewers. Therefore, we would like to have a
feasible solution to the connectivity-k-aloc problem using a high level expert
in each of the projects, and to use the panel members in a method to increase
the robustness of the resulting ranking, by providing a 2-reviewer disjoint paths
between some pairs of projects.

5. p-node connectivity: Similarly to the p-edge connectivity problem, in
order to increase the reliability of the implied rankings, we ask that there are
at least p node disjoint ranking paths in GR between each pair of projects.
I.e., the removal of at most p − 1 projects results in a connected review graph.
The motivation for this is that low node connectivity indicates that the implied
rankings of some pairs depend on very few projects and can skew the results. In
the example in Figure 1 the review graph is only 1 node connected, as there are
no two node disjoint paths between node 1 and node 6. Therefore, the implied

258 D.S. Hochbaum and A. Levin

Fig. 2. A review graph GR with star topology

ranking of nodes 1 and 6 depends only on the relative strength of project 5.
When project 5 is particularly strong, then the implied ranking of projects 1
and 6 may not be meaningful as the extent of the differentiation between them
is dominated by the strength of project 5. This example can be magnified in
a star review graph such as the one shown in Figure 2. The review graph in
this example is a 1-node connected. The associated problem is to maximize
the number of pairs of projects that have at least p node disjoint ranking paths
between them. This associated problem is called the (k, p)-node connectivity
allocation problem denoted as (k, p)−NCon.

6. q-hop: As the length of the ranking path increases, the robustness and
reliability of the implied ranking decreases. It is therefore desirable to limit the
length of the ranking paths. For each pair of projects we require the existence
of at least one ranking path that has length of at most q hops. That means that
the ranking path has at most q edges. When all projects are directly comparable
the allocation provides a 1-hop review graph. The graph in Figure 1 is a 3-hop
review graph and the graph in Figure 2 is a 2-hop review graph. The associated
problem called (k, q)-hop problem is to maximize the number of pairs of projects
that have at least one q-hop ranking path between them.

We note that the connectivity-k-aloc problem can be solved by solving any
of the following problems: The (k, 1)-ECon, the (k, 1)-RCon, the (k, 1)-NCon,
and the (k, |V | − 1)-hop. This is so because in all these optimization problems
the goal function value of the optimal solution equals

(|V |
2

)
if and only if the

connectivity-k-aloc instance is feasible.

The graph model. The problem of allocating evaluation tasks to reviewers
can be cast as the H-graph k-clique cover problem defined as follows. Given a
set V , L sets S1, . . . , SL ⊆ V , and an integer k, find subsets V1, . . . , VL, with

The k-Allocation Problem and Its Variants 259

Vi ⊆ Si, and |Vi| ≤ k, so that the review multi-graph GR = (∪L
i=1Vi,∪L

i=1CVi)
has property H. We are interested in the following properties H. For example,
GR is a complete graph as in the k-complete problem.

Related Research. The Perron-Frobenius Theorem states the algebraic con-
ditions that guarantee a positive unique solution eigenvector r to the system
Ar = λr. This subject is related to aggregate ranking when the matrix A rep-
resents the pairwise comparisons between all pairs of objects. Further, each col-
umn of the matrix can be viewed as the ranking provided by one reviewer. The
eigenvector r, if exists, is a principal eigenvector – corresponding to the largest
eigenvalue. This theorem and the generated principal eigenvector r have been
used for decades to generate an aggregate ranking from a matrix of rankings
that can be viewed as provided by different reviewers. The condition to the ex-
istence of such eigenvector is that the matrix A is irreducible. (For a statement
of the theorem see e.g. [22].) The irreducibility of the matrix is equivalent to
the connectivity of GR. In spite of the importance of the irreducibility property,
condition for the allocation of evaluation tasks so as to achieve a matrix with
this property have not been studied.

The k-complete problem and the max k-complete coverage problem
were recently studied by Cook et al. [8] who gave integer programming formu-
lations and a branch-and-bound (exponential time) algorithm for solving these
problems as well as a heuristic algorithm.

The (k, q)-hop problem was addressed recently by Park and Newman [24]
in ranking college football teams. They include in a graph a directed arc from
i to j if (football) team i wins against team j. They conclude an implied win
if there is a directed path with q hops, where the weight of this implied win
decreases exponentially with q. The algorithm they developed is based on the
diminished importance of the implied paths as a function of the number of
hops. This model is different from ours in that the graph is determined as an
outcome of the evaluation (playing the games) process which determines the
directions of the arcs. In our model the topology (of the undirected graph) is
determined by the k-allocation and only the intensities are determined by the
evaluations.

The problem of finding a minimum set of edges that must be added to a given
(simple) subgraph so that the resulting (simple) graph is 2-edge connected has
been studied previously. Eswaran and Tarjan [10] provided a sufficient and nec-
essary conditions, and a linear time algorithm to construct an optimal solution
is given in [21,25]. In order to extend the linear time algorithm of [21,25] for
multigraphs, we shrink each pair of nodes with parallel edges between them,
where we traverse the pairs of nodes in a BFS manner. So this preprocessing
takes a linear time, and then we apply the algorithm of [21,25]. Therefore, if
k = 2 and the number of edges that can be augmented to GR is large enough
so that it is possible to make the whole review graph a 2-edge connected graph
(or 2-reviewer connected graph), then such a feasible solution can be found in
linear time.

260 D.S. Hochbaum and A. Levin

We are using here two auxiliary problems: the maximum coverage problem and
the densest k-subgraph problem. The maximum coverage problem is defined
on a given a collection of elements and a collection F of subsets of the element
set. The objective is to select up to L members of F that cover a maximum num-
ber of elements. The maximum coverage with cardinality constraints
problem (MCCC) is a variant of the maximum coverage problem where F is
partitioned into L sub-collections F1, F2, . . . ,FL, and the constraint restrict-
ing the choice of at most L subsets from F is replaced by a set of constraints
enforcing for each j the choice of a single member of F j .

The densest k-subgraph problem is defined on an undirected graph G =
(V,E) and an integer number k. The goal is to find a subset V ′ ⊆ V of at most k
nodes so as to maximize the number of edges in the induced subgraph of G over
V ′. This problem is known to be NP-hard and the current best known approx-
imation algorithm for this problem has an approximation ratio of O(n−1/3+δ)
for a positive fixed number δ [11]. Moreover, there is an O(k

n)-approximation
algorithm for this problem (see for example [2]).

Paper overview. In Section 2 we show that connectivity-k-aloc problem
is polynomially solvable via intersection of two matroids. In Section 3 we study
two related decision and optimization problems: the k-complete problem and
the max k-complete coverage problem. We first determine the complexity
of the max k-complete coverage problem as a function of k: we show that
for k = 2 the max 2-complete coverage is polynomially solvable, whereas
for any fixed value of k greater than 2 the k-complete is NP-complete, and
hence the max k-complete coverage problem is NP-hard. Next, we consider
several approximation algorithms for the max k-complete coverage problem:
A trivial 1

k−1 -approximation for even values of k and 1
k -approximation for odd

values of k. The trivial algorithm applies to all values of k (even if k is not fixed);
we then show that we can apply the greedy algorithm which was devised by
Chekuri and Kumar [7]. This greedy algorithm is a 1

2 ·ρ-approximation algorithm,
where ρ is the approximation ratio of an approximation algorithm for the densest
k-subgraph problem (i.e., ρ = O(n−1/3+δ) for a fixed value of δ > 0, or ρ =
O(k

n)). Next, it is shown that for a fixed value of k the max k-complete
coverage problem can be reduced to MCCC. Therefore, for fixed value of k, we
can apply a recent algorithm by Ageev and Sviridenko [1] with an approximation
ratio of 1−

(
1− 1

r

)r where r can be as large as O(nk−2) (so this approximation
ratio is about 1 − 1

e = 0.63212). This algorithm of [1] has high complexity as
it requires to solve a linear program with number of variables as large as the
number of all possible k-subsets. The study of the max k-complete coverage
problem is concluded with a discussion in the full version of several extensions
and modifications. In Section 4 we study the (k, p)-ECon, the (k, p)-RCon and
the (k, p)-NCon problems. We prove that the (k, 2)-RCon is NP-complete for
all fixed values of k ≥ 2. We show that the (k, p)-NCon is NP-complete for all
values of p and k such that p ≥ 2 and k ≥ 2, and we prove that the (k, p)-ECon
problem is NP-complete is k ≥ 2 and 2k − 2 ≥ p ≥ k. In Section 5 we show
that the 2-reviewer connectivity augmentation problem is polynomially

The k-Allocation Problem and Its Variants 261

solvable using a dynamic programming algorithm. In Section 6, we prove that
the (k, q)-hop problem is NP-complete for all fixed values of q ≥ 2 and k ≥ 2.
Omitted proofs will appear in the full version.

2 The connectivity-k-aloc Problem

Here we state that the connectivity-k-aloc problem is polynomially solvable
as an instance of an intersection of two matroids. The proof is provided in the
Appendix.

Theorem 1. The connectivity-k-aloc problem is solvable in polynomial time
O((|P |+ |R|)3). If the number of reviewers is fixed then the problem is solvable in
O((|P |+ |R|) log(|P |+ |R|)) time.

3 The k-complete and the max k-complete coverage
Problems

3.1 Complexity Classification

The following theorem proves that the max 2-complete coverage is polynomi-
ally solvable via a matching procedure, whereas the k-complete for each fixed
value of k (k ≥ 3) is NP-complete. The proof of the theorem is given in the
appendix.

Theorem 2. The max 2-complete coverage problem is solvable in time
O(min{mGL

1.5, L2.5/ log(mG + L)}). The k-complete is NP-hard for all fixed
values of k such that k ≥ 3.

3.2 Approximation Algorithms

Since the max k-complete coverage problem is NP-hard, we turn our atten-
tion to approximation algorithms.

The trivial algorithm. The so-called trivial algorithm is a generalization of the
matching procedure used to solve the max 2-complete coverage problem.
Given an instance of max k-complete coverage we construct a bipartite
graph B = (A1; A2, EB). For each subset Sj there is a corresponding node in A1

denoted by vSj , and for each edge e of G there is a corresponding node in A2

denoted by ue. There is an edge (vSj , ue) ∈ EB if both endpoints of e belong
to Sj .

A b-matching in the bipartite graph B is a set of edges M that has up to bi
edges adjacent to node i. For each node i in A1, bi = �k

2 �, and for each node j in
A2, bj = 1. A maximum b-matching has a maximum number of edges among all
b-matchings. From the maximum b-matching, M , we generate a feasible solution
to the max k-complete coverage by setting, for each Sj, the subset Vj is the
one consisting of the endpoints of its matched edges {eq ∈ A2|(sj , eq) ∈ M} in
the b-matching.

262 D.S. Hochbaum and A. Levin

Theorem 3. The trivial approximation algorithm is a
(

1
k−1

)
-approxi mation

algorithm for even values of k and a
(

1
k

)
-approximation algorithm for odd values

of k. The complexity of the algorithm is O(nmL logn).

Applying the greedy algorithm when k is not fixed. We denote by ρ the
approximation factor of an approximation algorithm for the densest k-subgraph
problem (so ρ = O(n−1/3+δ) < 1, or ρ = O(k

n)). When k is a fixed constant then
ρ = 1 (by testing all possible k-subsets of nodes).

The greedy algorithm iteratively picks subsets that cover, each in turn, the
maximum number of uncovered elements. In each step the subset picked must
be a subset of Sj such that the algorithm did not select earlier another subset
of Sj . Chekuri and Kumar [7] proved that this algorithm is a 1

2 -approximation
algorithm. If in each step of the greedy algorithm, instead of picking the subset
that covers the maximum number of uncovered elements (among the subsets
of Sj such that the algorithm did not select earlier another subset of Sj), the
algorithm picks a subset that covers at least β times the maximum number of
uncovered elements (note that β ≤ 1), then Chekuri and Kumar showed that
the resulting approximation ratio is 1

2β.

Theorem 4. For a ρ-approximation algorithm for the densest k-subgraph prob-
lem, then there is a 1

2ρ-approximation algorithm for the max k-complete cov-

erage problem. Hence there is an O(min{n−1/3+δ, k
n}) < 1 approximation al-

gorithm for the max k-complete coverage problem. Moreover, if there is a
ρ′-approximation algorithm for the max k-complete coverage problem, then
there is also a ρ′-approximation algorithm for the densest k-subgraph problem.

Transforming the max k-complete coverage problem into MCCC
when k is fixed. For each Sj we write down the list of all subsets of Sj

that have exactly k elements. Denote by F j the resulting family of k-subsets of
Sj , and if |Sj | < k we let F j = {Sj}. Denote F=

⋃
j F j . The max k-complete

coverage problem is to choose one set from each F j such that the number
of covered edges with endpoints in a common set is maximized. The resulting
problem is an instance of the maximum coverage with cardinality con-
straints problem. The size of this instance is polynomial if we assume that k
is fixed. With this reduction and the approximation algorithm in [1] we have,

Theorem 5. When k is a fixed constant, there is a (1 − 1
e)-approximation al-

gorithm for the max k-complete coverage problem.

4 The (k, p)-RCon, the (k, p)-NCon and the (k, p)-ECon
Problems

Theorem 6. The (k, 2)-RCon problem is NP-complete for all fixed values of k
such that k ≥ 2. The (k, p)-NCon problem is NP-complete for all fixed values of
p and k such that p ≥ 2 and k ≥ 2.

The k-Allocation Problem and Its Variants 263

It remains to consider the complexity status of the (k, p)-ECon problem. We first
note that if each reviewer has an expertise set that contains at least k projects
and p ≤ k − 1, then the review graph is p-edge connected if and only if it is
1-edge connected (i.e., if it is a feasible solution to the connectivity-k-aloc
problem). We next consider the case where p ≥ k, and we prove the following.

Proposition 1. The (k, p)-ECon problem is NP-complete for all values of k ≥ 2
such that 2k − 2 ≥ p ≥ k.

5 The 2-reviewer connectivity augmentation Problem

In this section we show how to solve in polynomial time the 2-reviewer con-
nectivity augmentation problem. We define a block to be a non-trivial (i.e.,
with at least two nodes) maximal node set such that between each pair of nodes
in this set there are at least 2-reviewer disjoint paths.

Lemma 1. Given an optimal solution such that there is a pair of additional
reviewers r, r′ where r review projects p1 and p2, and r′ reviews p3 and p4 (among
perhaps other projects), then p1, p2, p3, and p4 belong to a common block.

Our algorithm Augment DP for solving the 2-reviewer connectivity aug-
mentation problem is based on the above lemma and uses dynamic programming.

Theorem 7. Algorithm Augment DP solves the 2-reviewer connectivity
augmentation problem in O(n5k2q2) time.

6 The (k, q)-hop Problem

Theorem 8. The (k, q)-hop problem is NP-complete for all fixed values of q
and k such that q ≥ 2 and k ≥ 2.

References

1. A. A. Ageev and M. I. Sviridenko, ”Pipage rounding: a new method of constructing
algorithms with proven performance guarantee,” Journal of Combinatorial Opti-
mization, 8, 307–328, 2004.

2. Y. Asahiro, K. Iwama, H. Tamaki and T. Tokuyama, ”Greedily finding a dense
subgraph,” J. Algorithms, 34, 203–221, 2000.

3. J. J. Bartholdi, C. A. Tovey and M. A. Trick, ”The computational difficulty of
manipulating an election,” Social Choice and Welfare, 6, 227–241, 1989.

4. J. P. Brans and Ph. Vincke, ”A preference ranking organization method,” Man-
agement Science, 31, 647–656, 1985.

5. C. Brezovec, G. Cornuejols and F. Glover, “Two algorithms for weighted matroid
intersection,” Mathematical Programming, 36, 39-53, 1986.

6. C. Brezovec, G. Cornuejols and F. Glover, ”A matroid algorithm and its application
to the efficient solution of two optimization problems on graphs,” Mathematical
Programming, 42, 471-487, 1988.

264 D.S. Hochbaum and A. Levin

7. C. Chekuri and A. Kumar, ”Maximum coverage problem with group budget con-
straints and applications,” in Proceedings of APPROX 2004, 72–83, 2004.

8. W.D. Cook, B. Golany, M. Kress, M. Penn and T. Raviv. Optimal allocation of
proposals to reviewers to facilitate effective ranking. Management Science, 51,
655–661, 2005.

9. D. Dor and M. Tarsi, ”Graph decomposition is NP-complete: a complete proof of
Holyer’s conjecture,” SIAM Journal on Computing, 26, 1166–1187, 1997.

10. K. P. Eswaran and R. E. Tarjan, ”Augmentation problems,” SIAM Journal on
Computing, 5, 653-665, 1976.

11. U. Feige, G. Kortsarz and D. Peleg, ”The Dense k-Subgraph Problem,” Algorith-
mica, 29, 410-421, 2001.

12. E. Fernandez and R. Olemdo, ”An agent model based on ideas of concordance and
discordance for group ranking problems,” Decision Support Systems, 39, 429–443,
2005.

13. G. N. Frederickson and M. A. Srinivas, ”Algorithms and data structures for an
expanded family of matroid intersection problems,” SIAM Journal on Computing,
18, 112-138, 1989.

14. R. Fuller and Ch. Carlsson, ”Fuzzy multiple criteria decision making: recent devel-
opments,” Fuzzy sets and systems, 78, 139–153, 1996.

15. H. N. Gabow and R. E. Tarjan, ”Almost optimum speed-ups of algorithms for
bipartite matching and related problems,” in Proceedings of STOC 1988, 514–527,
1988.

16. H. N. Gabow and R. E. Tarjan, ”Faster scaling algorithms for network problems,”
SIAM Journal of Computing, 18, 1013–1036, 1989.

17. M. R. Garey and D. S. Johnson, Computers and Intractability, W.H. Freeman and
Co., New York, 1979.

18. D. S. Hochbaum and B. Chandran, ”Further below the flow decomposition barrier
of maximum flow for bipartite matching and maximum closure.” Manuscript, UC
Berkeley April 2004.

19. D. S. Hochbaum and A. Levin, ”Methodologies for the group rankings decision.”
Manuscript, UC Berkeley April 2005, to appear Management Science.

20. I. Holyer, ”The NP-completeness of some edge-partition problems,” SIAM Journal
on Computing, 10, 713–717, 1981.

21. T. Hsu and V. Ramachandran, ”On finding smallest augmentation to biconnect a
graph,” SIAM Journal on Computing, 22, 889-912, 1993.

22. J. P. Keener, ”The Perron-Frobenius theorem and the rating of football teams,”
SIAM review, 35, 80–93, 1993.

23. J. G. Kemeny and J. L. Snell, ”Preference ranking: An axiomatic approach,” In
Mathematical models in the social sciences, Boston, Ginn, 9–23, 1962.

24. J. Park, and M.E.J. Newman, ”A network-based ranking system for US
college football,” Journal of Statistical Mechanics: Theory and Experiment,
(Oct. 31, 2005). Abstract available at http://www.iop.org/EJ/abstract/1742-
5468/2005/10/P10014.

25. A. Rosenthal and A. Goldner, ”Smallest augmentations to biconnect a graph,”
SIAM Journal on Computing, 6, 55-66, 1977.

26. A. Schrijver, ”Combinatorial optimization polyhedra and efficiency”, Springer–
Verlag, Berlin, 2003.

An Experimental Study of the Misdirection

Algorithm for Combinatorial Auctions

Jörg Knoche� and Piotr Krysta��

Dept. of Computer Science, University of Dortmund

Abstract. Single-minded combinatorial auctions (CA) are auctions in
which a seller wants to sell diverse kinds of goods and each of the po-
tential buyers, also called bidders, places a bid on a combination, i.e., a
subset of the goods. There is a severe computational limitation in CA,
as the problem of computing the optimal allocation is NP-hard and even
hard to approximate. There is thus interest in polynomial time approxi-
mation algorithms for this problem. Recently, many such approximation
algorithms were designed, among them greedy and local search based
algorithms. One of these is a so-called misdirection algorithm combining
both approaches and using a non-standard, misdirected, local search ap-
proach with neighborhood of size 2. This algorithm has the best known
provable approximation ratio for the problem in terms of the sizes of bids.
Its analysis, however, is quite complicated. We study this algorithm and
its variants on typical instances designed for CAs. On question is if larger
neighborhood helps – the question that seems quite difficult to address
theoretically at the moment, taking into account already complex anal-
ysis for size 2 neighborhood. We also study experimentally other aspects
of the misdirection algorithm, and finally present a comparison to other
approximation algorithms.

1 Introduction

There has been an increasing interest in the recent years in so-called combinato-
rial auctions (CA). These are auctions where a seller wants to sell diverse kinds
of goods and the potential buyers, called bidders, place bids on the combina-
tions, i.e., subsets of goods. Such auctions were suggested for auctioning, e.g.,
spectrum licenses, landing slots or computational resources, see [23] for a survey.

When the auction concerns many related kinds of goods, combinatorial auc-
tions are particularly well suited as they allow buyers to express their valuations
on combinations of goods, which should lead to more economically efficient allo-
cations. One of the main obstacles of dealing with combinatorial auctions is the
� Department of Computer Science, Dortmund University, Baroper Str. 301, 44221

Dortmund, Germany. E-mail: joerg.knoche@cs.uni-dortmund.de. The author is
partially supported by DFG grant Kr 2332/1-2 within Emmy Noether program.

�� Department of Computer Science, Dortmund University, Baroper Str. 301, 44221
Dortmund, Germany. E-mail: piotr.krysta@cs.uni-dortmund.de. The author is
supported by DFG grant Kr 2332/1-2 within Emmy Noether program.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 265–278, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

266 J. Knoche and P. Krysta

computational hardness of the problem of determining the optimal allocation for
a given collection of buyers. This problem, called also winner determination, is
known to be NP-hard and even hard to approximate [15].

For simplicity, we assume that each bidder desires only a single subset of goods
and places a positive valuation only on this particular set of goods (any superset
obviously values the same for this bidder). Such kind of restricted bidders, called
single-minded, has been introduced by Lehmann et al. in their seminal paper [15],
and has since been intensively investigated, e.g., [2,17,7,14].

In this paper we are interested in the winner determination problem in single-
minded CAs, well known in discrete optimization as the set packing problem.
Given a family of subsets of a given universe, each subset with a prescribed
value, this problem asks for a maximum value set packing, i.e., a pairwise-
disjoint subfamily of the subsets. Here, each single subset models a single bidder
desiring that subset and its value is the bidder’s valuation. The disjointness
constraints corresponds to the fact that the seller cannot sell the same good to
two bidders.

Since the set packing problem is NP-hard and even hard to approximate,
polynomial time approximation algorithms are of interest. In fact, many ap-
proximation algorithms have been designed for this problem, see, e.g., [11] for
a survey. We will be interested in approximating this problem in terms of d,
which is the size of the largest set in the input family. Having the value of d
small in terms of combinatorial auctions (CA) means that the bidder’s pref-
erence sets are of size at most d, which clearly is the natural assumption for
the bidders.

It is known that even unweighted, i.e., when values of the sets are unit,
set packing problem with sets of size at most d is NP-hard to approximate
to within O(d/ log d) [12]. We cannot, thus, expect a much better than merely
d approximation factor for this problem in polynomial time. It is quite easy to
obtain a precisely d-approximation algorithm via the greedy method. In fact, a
d-approximation with a running time O(|S|2) was given by Hochbaum [13], and
a |S|O(1/ε)-time (d− 1+ ε)-approximation for any fixed ε > 0, by Bafna et al. [4]
and Arkin & Hassin [3], where S is the given family of sets.

It turns out that even reducing the constant in front of d is a challenging
problem. Chandra and Halldórsson [8] succeed to give a 2

3 (d+1)-approximation
for this problem, at the expense of running time of Ω(|S|d), which is not polyno-
mial if d is not a fixed constant. Berman [5] has improved this ratio to 1

2 (d+ 1)
but the running time is also Ω(|S|d). The first known better than d approxima-
tion in polynomial time is due to Berman and Krysta [6], who gave a factor 2

3d
approximation for this problem in time roughly O(|S|2). This last result is also
the best known to date approximation ratio for the considered problem.

Berman and Krysta [6] consider in fact a slightly more general problem, that
is, a maximum weighted independent set problem in a (d + 1)-claw-free graph.
Their algorithm is based on the local search method with a local misdirected 1

1 Misdirection is meant to mean here that while performing one step of the local
search, we locally optimize a different (misdirected) objective than the original one.

An Experimental Study of the Misdirection Algorithm for CA 267

objective and neighborhood of size 2 2. The theoretical analysis of this algorithm
in [6] is quite technical and complex. Thus, for instance, a natural question of
extending this analysis to neighborhood of size 3 seems quite challenging. This is
the place where experimental analysis may help. This, and other questions and
properties of the misdirection algorithm that seem difficult, or even impossible to
address theoretically, are the subject of this experimental paper. We also study
other greedy algorithms and an LP-based randomized rounding algorithm.

Outline. The rest of this paper is organized as follows. Section 2 has formal
definitions, description of the algorithms and instances. Section 3 includes the
experimental analysis of the misdirection algorithm. Section 4 compares all al-
gorithms by running time and approximation factor.

2 Problem Definition, Algorithms and Instances

We formally define the set packing problem. We are given a finite set of goods
U with |U | = m, and a family of subsets of U denoted by S ⊆ 2U . A given set
S ∈ S models a bidder, and thus we identify set S with the set of bidders, and
|S| = n. Let also each S ∈ S have an associated weight w(S) ∈ R+, modeling
the valuation of bidder S. The set packing problem (winner determination in
CAs) asks for finding a packing, that is, a subfamily S′ ⊆ S such that any
two distinct sets S, T ∈ S′ are disjoint, S ∩ T = ∅, and the total weight of S′,
w(S′) =

∑
S∈S′ w(S), is maximized. We will assume in this paper that d ∈ N+

is the maximum size of any bid, i.e., max{|S| : S ∈ S} = d. Set packing problem
is known to be NP-hard to approximate to within a factor of O(d/ log d) [12].

2.1 Description of the Algorithms

We describe below the approximation algorithms for set packing we will use.

Greedy-1: This is algorithm Greedy-1 from paper [14]. It first sorts the sets in
S by non-increasing values of w(S)/

√
|S|, and then goes through all sets in this

order and puts them into the solution maintaining the feasibility of the pack-
ing. Since our input data is represented as a 0/1 matrix A such that Ae,S = 1
iff e ∈ S, implementing Greedy-1, the time to compute |S| for each S ∈ S is
taken into account. Greedy-1 is know to be

√
m-approximate for set packing [15].

Greedy-2: The same as Greedy-1 above, but the sorting is with respect to non-
increasing values of w(S). Note, that this algorithm is a bit faster than Greedy-1,
since we do not need to compute |S| for S ∈ S. Hochbaum [13] shows that it is
d-approximate for set packing.

Greedy-3: The same as Greedy-1 above, but the sorting is with respect to non-
increasing values of w(S)/|S|. We did not put this algorithm into our
2 We use the term neighborhood to denote a parameter � in the misdirection algorithm,

but in fact the ”real” neighborhood size is roughly O(|S|�).

268 J. Knoche and P. Krysta

diagrams – see further explanations below. In theory Greedy-3 has an approxi-
mation ratio of d (in fact [14] shows ratio d+ 1 for Greedy-3 on a more general
problem, but the analysis of [14] slightly modified shows ratio d for set packing).

Misdirect-noGreed: This is the basic misdirection algorithm of Berman and
Krysta [6]. It starts with an empty solution and performs all possible local ex-
changes. While this algorithm is defined in [6] for a slightly more general than
set packing problem we redefine it here for the latter problem. Before we de-
scribe it we need some notation. Let P ,R ⊆ 2U be two given set families. We
define N(P ,R) = {R ∈ R : ∃P ∈ P such that P ∩ R
= ∅}. We also define
P �R = (P \N(R,P))∪R. Observe that if family P and family R is a packing
then so is family P �R. Let also wα(P) =

∑
P∈P(w(P))α, for a given α > 1. Al-

gorithm Misdirect-noGreed, also called �− Impα, with neighborhood size � = 2
and value of α = 1.71 (from [6]), is as follows.

Algorithm 2− Impα

P ← ∅
while there exists pair of sets {S, T } ⊆ S that improves wα(P) do
P ← P � {S, T }

This algorithm can be described in words simply as follows: start from an empty
packing, and as long as there is a pair of sets that on adding to the current
packing (and removing all conflicting sets) improves the misdirected objective
wα(·), perform such a local exchange. This algorithm may not have polynomial
running time, and it is shown in [6] how to make it polynomial – see algorithm
Misdirect below. Berman and Krysta prove an upper bound of (roughly) 2

3d on
the approximation ratio of algorithm 2 − Imp1.71. More precisely, they prove
that α = 1.71 is the value of α giving the best approximation ratio of 2

3d.

Misdirect: This is the original misdirection algorithm described in paper [6].
First it runs algorithm Greedy-2. Let P be the output greedy packing. Then,
rescale the weights so that w(P) = k · |S| = k · n, for some fixed k ∈ N+, and
run algorithm Misdirect-noGreed after replacing the function w with w(S) =
�w(S)α�1/α, starting with initial solution P . Berman and Krysta show that the
running time of this modified algorithm is bounded by O(kα(dn)2+α), and its
approximation ratio is at most k

k−1 ·
2
3 · d, for any choice of k ∈ N+.

RandRound: This is the most typical approximation algorithm, see [18,19,22],
for packing problems like set packing. It first solves the linear programming re-
laxation of the set packing problem and then performs the standard randomized
rounding. An iteration may not produce a feasible packing and that is why we re-
peat the randomized rounding step 750 times and take the best output solution.
Please note that we do not optimize the number of iterations of RandRound and
take it into account just to compare with the above (combinatorial) algorithms,
and our comparison is fair – see further sections. Srinivasan [21] proved that
RandRound has an O(d)-approximation for set packing, where, in particular the
constant in the ratio O(d) is larger than 1.

An Experimental Study of the Misdirection Algorithm for CA 269

2.2 Description of the Instances

Vohra / de Vries: These instances are described by Zurel and Nisan [24], and
by de Vries and Vohra [23]. The description below follows [24]. These instances
are called in our experiments prob.i.m.n.d, where i = 1, 2, 3, 4 according to the
definitions below, and numbers m, n and d are as defined previously. (Some of
the instances may not have the last part d in prob.i.m.n.d defined.)

1. Random: For each bid, pick the number of goods randomly from {1, 2, . . . , m}.
Randomly choose that many goods without replacement. Pick the bid weight
(valuation) randomly from [0, 1]. Then, m ∈ {100, . . . , 400}, n ∈ {500, . . . , 1000}.
2. Weighted Random: The same as for Random, but the bid weight is picked from
[0, number of goods in bid]. Then, m ∈ {100, . . . , 400}, and n ∈ {500, . . . , 2000}.
3. Uniform: For each bid, pick a constant number of goods randomly from
{1, 2, . . . , m}. Randomly choose that many goods without replacement. Pick the
bid weights randomly from [0, 1]. Then, m ∈ {25, . . . , 100}, n ∈ {50, . . . , 1100},
and the bid size d ∈ {3, 8, 11}.
4. Decay: For each bid, give it one random good. Then repeatedly add a new ran-
dom good with probability γ until that good was not added or the bid contains
all m goods. Pick the bid valuations randomly from [0, number of goods in bid].
Also, m ∈ {50, . . . , 200}, n ∈ {50, . . . , 200}, and the probability γ ∈ [5%, 95%].

CATS: These are instances generated by the CATS program described in pa-
per [16] by Leyton-Brown, Pearson and Shoham. The used distributions are
arbitrary, paths, regions and scheduling. We have used the standard parame-
ters to generate these instances, and only the number of bids and goods was
varying. For more precise description of this instance generator see [16] and
the web page http://cats.stanford.edu/. These instances are referred in our
paper to as name.m.n, where name ∈ {arb, paths, reg, sched} and the names
{arb, paths, reg, sched} correspond to the ones above.

Fujishima / Sandholm: These are the instances described in [1], which can
be found at web page http://user.it.uu.se/∼tein/cmb/index.html. They
contain instances generated according to random, uniform, decay, binomial and
exponential distribution. The distributions used in our experiments are uni-
form, binomial with 1500 bids and exponential. From each distribution the first
5 instances have been taken. We refer to those instances as name.nr, where
name ∈ {exp, uni, bin} and nr is the number of the instance. Following the
cited paper, we keep m, n fixed to some specific values.

Uniform ([20]): Draw the same number of randomly chosen items for each bid.
Pick an integer valuation from [500, 1500] and multiply by the number of com-
modities. The number of goods and bids are fixed to m = 100 and n = 500.

Binomial ([9]): The probability distribution for a bid requesting j goods out of
m goods in the market is f(j) = pj · (1 − p)m−j ·

(
m
j

)
with p = 0.2. An integer

270 J. Knoche and P. Krysta

valuation is drawn from 500 to 1500 and multiplied by j. The number of goods
and bids here are m = 150 and n = 1500.

Exponential ([9]): The probability distribution is defined as fe(j) = c ·e−j/5 (c is
implicitly defined by

∑m
j=1 fe(j) = 1, where m as before is the number of goods).

The valuation is an integer, rectangularly drawn from [500, 1500] and multiplied
by the number of requested goods j. Again, we fix m = 30 and n = 3000.

Random: These instances were randomly generated by us with a fixed number
of goods m, bids n, and goods per bid (the d value). We choose randomly n
subsets (bids) of size d out of m goods (possibly with repetitions). Then for
each generated bid its weight is randomly chosen from [0, 1] and multiplied by
d. We call these instances Randomx, where x is the serial number of the instance.

Test-Setup: All algorithms are implemented in Java 1.4.2 and run on AthlonXP
1900 MHz machine with 768 MB RAM under WindowsXP with Service Pack 1.
In all tested instances the optimal solution was found by using CPLEX 6.5.2.

3 Analyzing the Misdirection Algorithm

3.1 Proved Versus Achieved Approximation

A natural question after one succeeds to prove a bound on the approximation
ratio is how rough this bound is as compared to one obtained on typical instances.
Indeed, also in the case of the misdirection algorithm 2 − Imp1.71 with the
starting greedy solution this bound turns out to be rough. This, of course, is not
surprising, but just confirms the known phenomenon that most likely there are
only few worst-case, untypical instances. For some data, see Figure 1.

Fig. 1. The proved approximation ratio is just 2
3
d, and the achieved ratio is calculated

by comparing to the optimal solution.

3.2 Larger Neighborhood

We investigate here one of our main questions concerning algorithm Misdirect,
namely if it is worth investing time to find theoretical analysis showing better
factors when � ≥ 3. Let us first consider a tight example in [6] for the ratio of 2

3d

An Experimental Study of the Misdirection Algorithm for CA 271

of 2 − Impα when d = 3. This is given by two examples in Lemma 2.1 and 2.2
in [6]. These two lemmas together imply Lemma 2.3 in [6] stating that for d = 3
the ratio is at least (

√
5d2 − 8d+ 4 + 2− d)/2 = 2

3d = β · d = 2, where βα = 1
2 ,

which implies β = 2
3 and α ≈ 1.71, which is the best theoretical value of α for

d = 3 found in [6]. (Note, taking α ≈ 1.71 gives approximation factor 2
3d for all

values of d. For other values of d slightly better values of α are found [6].)
It can, however, easily be checked that the locally optimal solutions w.r.t. � =

2 in these two examples from [6] are not locally optimal anymore when � = 3
and parameter β from [6] fulfills 1

3 < βα < 1. We, therefore, see that the size
3 neighborhood indeed helps, but certainly this is not enough evidence. What
about typical instances ?

We judge here the improvement in the weight of the solution when we change
the neighborhood size � in algorithm Misdirect from 2 to 4 on CA instances. We
have selected the instances in Figure 2 (a) only from type prob.i.m.n.d (addi-
tional number in the brackets is just the serial number). The reason being that
these are quite small instances and the running time increases rapidly when � is
raised. Obviously, we did not run the tests for larger � if we reached optimum,
i.e., 100% earlier. For each value of � ∈ {3, 4} we used one value of α for all
tested instances, namely the best found.

Fig. 2. (a) 100% on the vertical axis corresponds to the weight of an optimal solution.
(b) shows approximation factors of all algorithms averaged over all instances.

Conclusions: It seems it is worth to try to analyze � − Impα theoretically
for larger values of �. Even in the typical instances we selected we observe an
improvement in the approximation ratio ranging from 1% to about 10%. This
seems not much, but note, that our instances are average “typical” ones. On the
other hand it is plausible that there are better improvements possible on other
larger instances as well, but so far our limiting factor for such tests was rapidly
increasing running time of our implementations.

Testing which α is best for � ≥ 3 we observed that smaller values give bet-
ter results for larger neighborhoods. Our diagram in Fig. 2 (a) shows the best
solution found over all α tested (between 1 and 2 with step size 0.01), but we

272 J. Knoche and P. Krysta

found one value of α = 1.05 which gives these best results for � = 3. Same value
of α gives best results for most of the instances when � = 4, but we could not
test many of them because of high run time. For a majority of instances an α
smaller than 1.1 seemed to be best. But α-values up to 1.2 may also give better
results depending on the instance. For � = 2 we found that on roughly 30% of
the instances smaller values of α in (1.0, 1.2] were better than 1.71.

3.3 Misdirected Versus Standard Local Search

In this section we compare the standard local search, that is with α = 1, with
the misdirected local search, that is with α > 1, both with neighborhood of size
2. More precisely, we compare 2− Imp1 with 2− Imp1.71. Both used algorithms
start with an empty initial solution (Misdirect-noGreed).

The diagrams in Fig. 3 show the increase of the solution’s original weight,
w(S), at every local exchange for the respective algorithms. The weight of the
final solution output by 2− Imp1.71 algorithm is 100% on the vertical axis.

Fig. 3. Misdirected vs. standard local search

Conclusions: One can observe that of course in case of 2 − Imp1.71 there are
many jumps down, which in many cases lead to better locally optimal solutions
in the future exchanges.

Berman and Krysta [6] show an example on which the misdirected algorithm
avoids some bad local optima that would lead to an approximation factor of d,

An Experimental Study of the Misdirection Algorithm for CA 273

which is the case for the standard local search, instead of factor of 2
3d for the

misdirected algorithm. In fact, this example is quite specific one. A question is if
such a behavior also occurs for typical instances. Indeed, we found some instances
where this is the case, see Figure 3 (a) and (b). There are also instances in which
the misdirected solution was worse – see Figure 3 (c) and (d).

The major kind of behavior that we observed is, however, the fact that in
about 80% of all the instances we tested the two curves for 2− Imp1.71 and for
2 − Imp1 split at some exchange, earlier or later, and at the very point of the
split, the weight of the solution of 2 − Imp1.71 jumps down. As examples, see
Figure 3. Also in these majority of instances the 2− Imp1.71-curve is below the
2− Imp1-curve. We also observe that the remaining 20% of the instances where
this behavior does not occur, do not come from one specific type of instances.
We have not observed a clear correlation between the jump down and the fact
that the final Misdirect solution was better than that of standard local search.

3.4 How Fast Is the Local Optimum Reached?

We have taken into account here how many local exchanges are needed to reach
the final locally optimal solution for the Misdirect-noGreed algorithm.

In Figure 4 we draw the quality of the solution (w.r.t. the original weight
w(·)) as a function on the number of local exchanges. We see that within one
class of instances there are easier instances, where there are small number of
high jumps, and there are harder instances, where we have many small jumps.
One striking observation is that for Fujishima/Sandholm instances, see Fig. 4
(a) the instances have been clearly divided into easy, medium, and hard. In
particular easy are instances generated w.r.t. binomial distribution, medium –
ones generated with exponential distribution, and hard – generated with uniform
distribution. Observe, also, that in the case of “medium”, exponential instances
there are many jumps down, which may suggest that in those cases there are
many bad local optima and they are avoided by Misdirect-noGreed.

A similar picture can be obtained for Misdirect-noGreed with neighborhood
of size 3 in Figure 4 (d), where the easiest instances are the ones of Vohra/de
Vries – see also Fig. 4 (c) for those instances and neighborhood of size 2.

Considering Misdirect-noGreed with � = 2 on Vohra/de Vries instances we
found that there are also all levels of difficulty, see Fig. 4 (c).

Finally, we observed that in the case of Misdirect, increasing k which is used in
scaling the weights does not increase its running time on tested instances (though
a bound of O(kα(dn)2+α) on the running time in [6] suggests the opposite). To
explain this we found instances where the value of w(S)α increases by more than
1 in the exchanges, and not just by 1 as assumed in the O(kα(dn)2+α) bound.

4 Comparing All the Algorithms

This section is devoted to the comparison of all the algorithms that we tested,
that is the two greedy algorithms and two misdirection algorithms, and the
randomized rounding algorithm.

274 J. Knoche and P. Krysta

Fig. 4. How fast is the local optimum reached by Misdirect-noGreed for all
distributions?

4.1 Running Times

In terms of running time it is no surprise that the greedy algorithms are much
faster than the misdirection ones. For a comparison see Fig. 5, where we aver-
aged over 13 instances for the Vohra/de Vries distributions, 12 instances of the
CATS distributions and 15 instances of the Fujishima/Sandholm distributions.

Conclusions: We see that typically, the greedy algorithms are faster than
the misdirection ones by at least a factor of 100. We also see that the Fu-
jishima/Sandholm instances are most time demanding for all algorithms, and
the CATS instances are somehow least time demanding for all algorithms.

Note that when calculating the running time of RandRound in Fig. 5 we are
fair and only take into account the randomized rounding iterations and disregard
the time for solving the LP relaxation. The reason for this is that we solve the
LPs exactly by CPLEX, but for such packing LPs there are faster (approximate)
LP solvers, e.g., [10].

For RandRound we observe that our 750 iterations of randomized rounding
phase lead to running time higher than that of greedy algorithms (Fig. 5), but
the approximation factors achieved are much worse (Fig. 6, Fig. 2 (b)).

An Experimental Study of the Misdirection Algorithm for CA 275

Fig. 5. Running times of all algorithms averaged over the instances

We have also found two instances from the Vohra/de Vries distribution where
all the algorithms have a larger running time than on the other instances. Both
have a small d value of 3. Thus, possibly, the running time increases, when
the number of bids is the same but the d value is smaller. Finally we ob-
served that obtaining optimal solution with CPLEX was 10 to 100 times slower
than running a greedy algorithm. Except one type of the Fujishima/Sandholm
instances, namely exponential, where CPLEX was about 4 times faster
than greedy.

4.2 Approximation Factors

We first describe the diagrams for comparing the approximation factors. Fig. 6
(a), (b) shows the approximation factors for every algorithm depending on the
number of goods. Each data point is an average over 3-10 instances. Fig. 6 (c),
(d) shows the approximation factors for every algorithm depending on the num-
ber of bids, where each data point is an average over 3-5 instances. Finally, Fig. 2
(b) shows the approximation factors averaged over all instances of a distribu-
tion. The Vohra/de Vries value is averaged over 13 instances. The CATS value is
averaged over 12 (3 of each kind of distribution), and the Fujishima/Sandholm
value–over 15 instances (5 of each distribution type).

Conclusions: We see that Misdirect has the best approximation factors which
as we know is also the case in the theoretically proven results. This, however, is
with the expense of much higher running times – see the previous subsection.
Also, we did not put here Greedy-3 into the diagrams, because we observed
that Greedy-1 always had better approximation ratio than Greedy-3 (there are
only very few instances of the Fujishima-Sandholm type where the ratio of
Greedy-3 is better only by 0.02%). This is somehow interesting since in the-
ory Greedy-1 has ratio roughly

√
m (which is

√
30 ≈ 5.47 for those instances),

but Greedy-3 has ratio d (which is 4 for those instances).

276 J. Knoche and P. Krysta

Fig. 6. Approximation factors of all algorithms averaged over the instances

Fig. 7. Approximation factors of Misdirect with/without Greedy and of Greedy itself.
The table on the right is the running time (s) for those instances.

An Experimental Study of the Misdirection Algorithm for CA 277

4.3 How Profitable Is Using Greedy Inside Misdirect?

Fig. 7 shows that using greedy solution as the starting point for the misdirection
algorithm does not lead to much better approximation factors. Also, the running
times are not much different between Misdirect with and without Greedy.

Final conclusion: The best algorithm suggested by our experiments is Greedy-
1 if we want a good trade-off for both running time and approximation quality. It
also wins when the simplicity and easy implementation are the concerns. Greedy-
1 is fastest, and gives in most instances the best ratio and in all instances ratios
worse than slowest Misdirect, by at most 8%.

5 Conclusion and Future Work

Our experiments suggest that it should be interesting to try to theoretically prove
better ratios for Misdirect with larger neighborhoods. The theoretical bounds on
the running time of Misdirect appeared to be quite rough on typical instances.
We also observed some interesting behavior on how Misdirect avoids some local
optima. Among the tested algorithms Greedy-1 turns out to be best if we want
a fast algorithm, good approximation ratios and simple implementation. For the
future, we plan to also test other algorithms for multi-packing problems, and
conducting experiments on larger instances.

Acknowledgment. We would like to thank Piotr Berman for some useful
discussions on experimental analysis.

References

1. A. Andersson, M. Tenhunen, F. Ygge. Integer Programming for Combinatorial
Auction Winner Determination. Proc. 4th Int. Conf. on Multiagent Systems (IC-
MAS), 2000.

2. A. Archer, C.H. Papadimitriou, K. Talwar, and É. Tardos. An approximate truthful
mechanism for combinatorial auctions with single parameter agents. In Proc. of
14th SODA, 2003.

3. E. M. Arkin, and R. Hassin. On local search for weighted k-set packing. In the
Proc. ESA ’97, LNCS 1284, Springer, 1997.

4. V. Bafna, B. Narayana, R. Ravi. Nonoverlapping local alignments (Weighted inde-
pendent sets of axis-parallel rectangles). Discr. Applied Math., 71, 41–53, 1996.

5. P. Berman. A d/2 Approximation for Maximum Weight Independent Set in d-Claw
Free Graphs. Nordic J. Computing, 7(3), pp. 178–184, 2000.

6. P. Berman and P. Krysta. Optimizing misdirection. In Proc. 14th SODA, 2003.
7. P. Briest, P. Krysta, and B. Vöcking. Approximation Techniques for Utilitarian

Mechanism Design. In Proc. 37th ACM STOC, 2005.
8. B. Chandra and M. M. Halldórsson. Greedy local improvement and weighted pack-

ing approximation. In Proc. SODA, 1999.
9. Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational com-

plexity of combinatorial auctions: Optimal and approximate approaches. In Proc.
16th Int. Joint Conference on Artificial Intelligence (IJCAI), pp. 548–553, 1999.

278 J. Knoche and P. Krysta

10. N. Garg and J. Könemann. Faster and Simpler Algorithms for Multicommodity
Flow and Other Fractional Packing Problems. In Proc. 39th IEEE FOCS, 1998.

11. M.M. Halldórsson. A survey on independent set approximations. In Proc. APPROX
’98, Springer LNCS 1444, pp. 1–14, 1998.

12. E. Hazan, S. Safra and O. Schwartz. On the Hardness of Approximating k-
Dimensional Matching. In APPROX, 2003.

13. D. S. Hochbaum. Efficient bounds for the stable set, vertex cover, and set packing
problems. Discr. Applied Math., 6, pp. 243–254, 1983.

14. P. Krysta. Greedy Approximation via Duality for Packing, Combinatorial Auctions
and Routing. In Proc. of 30th MFCS, 2005.

15. D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth revelation in approximately
efficient combinatorial auctions. In Proc. 1st ACM Conference on Electronic Com-
merce (EC), 1999.

16. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a Universal Test Suite for
Combinatorial Auction Algorithms. In Proc. 2nd ACM Conference on Electronic
Commerce (EC), 2000.

17. A. Mu’alem and N. Nisan. Truthful Approximation Mechanisms for Restricted
Combinatorial Auctions. In Proc. 18th AAAI Conf. on Artificial Intelligence, 2002.

18. P. Raghavan. Probabilistic Construction of Deterministic Algorithms: Approximat-
ing Packing Integer Programs. J. Comput. Syst. Sci., 37(2), 130-143, 1988.

19. P. Raghavan and C.D. Thompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7: 365–374, 1987.

20. T. W. Sandholm. An algorithm for optimal winner determination in combinatorial
auctions.Proc. 16th Int. JointConf. onArtificial Intelligence (IJCAI), 542–547, 1999.

21. A. Srinivasan. A extension of the Lovász Local Lemma and its applications to
integer programming. In Proc. 7th ACM-SIAM SODA, 1996.

22. A. Srinivasan. Improved Approximation Guarantees for Packing and Covering In-
teger Programs, SIAM J. Computing, Vol. 29, 648–670, 1999.

23. S. de Vries and R. Vohra. Combinatorial Auctions: A Survey. INFORMS J. Com-
puting, 15(3), pp. 284–309, 2003.

24. E. Zurel and N. Nisan. An Efficient Approximate Allocation Algorithm for Com-
binatorial Auctions. In the Proc. EC, 2001.

Reversal Distance for Strings with Duplicates:

Linear Time Approximation Using Hitting Set

Petr Kolman1,	 and Tomasz Waleń2,		

1 Charles University in Prague
Faculty of Mathematics and Physics
Department of Applied Mathematics

kolman@kam.mff.cuni.cz
2 Warsaw University

Faculty of Mathematics, Informatics and Mechanics
walen@mimuw.edu.pl

Abstract. In the last decade there has been an ongoing interest in string
comparison problems; to a large extend the interest was stimulated by
genome rearrangement problems in computational biology but related
problems appear in many other areas of computer science. Particular at-
tention has been given to the problem of sorting by reversals (SBR): given
two strings, A and B, find the minimum number of reversals that trans-
form the string A into the string B (a reversal ρ(i, j), i < j, transforms a
string A = a1 . . . an into a string A′ = a1 . . . ai−1ajaj−1 . . . aiaj+1 . . . an).

Primarily the problem has been studied for strings in which every
symbol appears exactly once (that is, for permutations) and only recently
attention has been given to the general case where duplicates of the
symbols are allowed. In this paper we consider the problem k-SBR, a
version of SBR in which each symbol is allowed to appear up to k times
in each string, for some k ≥ 1. The main result of the paper is a Θ(k)-
approximation algorithm for k-SBR running in time O(n); compared to
the previously known algorithm for k-SBR, this is an improvement by
a factor of Θ(k) in the approximation ratio, and by a factor of Θ(k) in
the running time. Crucial ingredients of our algorithm are the suffix tree
data structure and a linear time algorithm for a special case of a disjoint
set union problem.

Keywords: Approximation algorithms, String comparison, Sorting by
reversals, Minimum common string partition, Suffix trees.

1 Introduction

In the last decade there has been an ongoing interest in string comparison
problems. To a large extent the interest was stimulated by genome rearrange-
ment problems in computational biology but related problems appear in many
� Supported by project 1M0021620808 (ITI) of Ministry of Education of the Czech

Republic.
�� Supported by the Polish Scientific Research Committee (KBN) under grant GR-

1946.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 279–289, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

280 P. Kolman and T. Waleń

other areas of computer science, in data compression or text processing to name
a few. One of the important problems is to measure the similarity of two strings.
Particular attention has been given to the problem of sorting by reversals (SBR):
given two strings, A and B, find the reversal distance of A and B, which is the
minimum number of reversals that transform the string A into the string B.
A reversal ρ(i, j), 1 ≤ i < j ≤ n, is an operation that transforms a string
A = a1 . . . an, into a string A′ = a1 . . . ai−1ajaj−1 . . . aiaj+1 . . . an (that is, the
reversal ρ(i, j) reverses the order of symbols in the substring ai . . . aj of A). In
the case of signed strings, each symbol is given a sign + or −, and the reversal
operation also flips the sign of each symbol in the reversed substring.

Primarily the problem has been studied for strings in which every symbol
appears exactly once (that is, for permutations); even in this setting the problem
is NP-hard for unsigned permutations [2] and, surprisingly, the problem is in P
for signed permutations [10]. Only recently attention has been given also to the
general case where duplicates of the symbols are allowed. We denote by k-SBR
the version of SBR in which each symbol is allowed to appear up to k times in each
string, for some k ≥ 1. Christie and Irving [4] prove that unsigned SBR is NP-
hard for binary strings and Chen et al. [3] show that 2-SBR is NP-hard. The best
approximation ratio for the general signed SBR is O(log n log∗ n) (following from
the work of Cormode and Muthukrishnan [6]); there are O(1)-approximation
algorithms for signed 2-SBR and 3-SBR [3,5,9]. Kolman [11] describes a greedy-
like O(k2)-approximation algorithm for k-SBR running in O(kn) time. Most
of the above mentioned algorithms exploit the close relationship between the
minimum common string partition problem (see below for definition) and the
problem of sorting by reversals: they find an approximation for the static problem
MCSP and turn it into a solution for SBR; this is also the approach that we take
in this paper. For an overview of other related results and for more details about
the relation between MCSP and SBR, we refer to the paper [11].

The main results of this paper areΘ(k)-approximation algorithms for k-MCSP
and k-SBR running in time O(n); compared to the previously known algorithms
for k-MCSP and k-SBR, this is an improvement by a factor of Θ(k) in the ap-
proximation ratio, and by a factor of Θ(k) in the running time.

On a high level, the algorithm works as follows: given the strings A and B,
the algorithm turns them into an instance of the minimum hitting set problem
and, exploiting special properties of the instance, it computes an approximation
of the minimum hitting set which is in turn transformed into an approximate
solution for k-MCSP; a solution for k-SBR is obtained from a solution of the
relevant k-MCSP problem by the standard technique mentioned above. Crucial
ingredients of the algorithm are a linear time procedure for construction of a
suffix tree [7] and a linear time algorithm for a special case of a disjoint set
union problem [8].

1.1 Notation

We stick to the notation used in the previous paper on k-SBR [11]. For a (signed
or unsigned) string P = a1 . . . an, we denote by −P the result of reversal ρ(1, n)

Reversal Distance for Strings with Duplicates 281

of P (e.g., for P = +a+ b− d, we have −P = +d− b− a; for P = abd, we have
−P = dba). We say that two (signed or unsigned) strings A = a1a2 . . . an and
B = b1b2 . . . bn are identical, A = B, if ai = bi for each i ∈ 1, . . . , n (in the case
of signed strings, ai = bi involves also the equality of the signs), and they are
congruent, A ∼= B, if A = B or A = −B (note that for the sake of notational
simplicity we overload the sign ∼= so that it has a slightly different meaning for
signed and unsigned strings).

Throughout the paper we assume that the symbols are represented by integers
from the set Σ = {1, 2, . . . , n}. We also assume that each symbol appears the
same number of times in A and B (for the signed version, we count together
the occurrences of a symbol with positive and negative signs). Clearly, this is a
necessary and sufficient condition for A and B to have a finite reversal distance.
We call such strings related.

The length of a string A is denoted by |A|. A duo is a string of length two.
A partition of a string A is a sequence P = (P1, P2, . . . , Pm) of strings whose
concatenation is equal to A, that is, P1P2 . . . Pm = A. The strings Pi are called
the blocks of P and their number is the size of the partition. Given a partition
P = (P1, P2, . . . , Pm), if l =

∑i
j=1 |Pj | for some i ∈ {1, 2, . . . ,m − 1}, we say

that the pair l, l + 1 is a break of the partition P and alal+1 is a broken duo of
the partition P .

For two strings A and B, we say that S is a common substring with respect
to the relation = if S is a substring of A and a substring of B; we say that S is
a common substring with respect to the relation ∼=, if S is a substring of A and
there exists a substring R of B such that S ∼= R, or S is a substring of B and
there exists a substring R of A such that S ∼= R. When not necessary, we will
often avoid specifying the relation and will talk only about a common substring.

To cut a duo aiai+1 of a block P = aj . . . ak of a partition of A, for some j ≤
i < k, means to replace the block P in the partition by two blocks P1 = aj . . . ai

and P2 = ai+1 . . . ak. For a string C = c1, . . . , cn, we denote by duos(C) the set
of duos of the string C, that is, duos(C) = {cici+1 | 1 ≤ i ≤ n− 1}.

SBR is closely related to the minimum common string partition problem. Given
a partition P = (P1, . . . , Pm) of a string A and a partitionQ = (Q1, . . . ,Qm) of a
string B, we say that the pair π = (P ,Q) is a common partition of A and B with
respect to the relation Rel ∈ {=,∼=}, if there exists a permutation σ on 1, . . . ,m
such that for each i ∈ 1, . . . ,m, (Pi,Qσ(i)) ∈ Rel. The minimum common string
partition problem (MCSP) is to find a common partition of A,B with the minimum
size, denoted by MCSP(A, B). The restricted version of MCSP, where each letter
occurs at most k times in each input string, is denoted by k-MCSP. Similarly as
for SBR, there is a signed and an unsigned variant of the problem. In unsigned
MCSP, the input consists of two unsigned strings, and the relation = is used; in
signed MCSP, the input consists of two signed strings and the relation ∼= is used.
For unsigned strings, we define yet another variant of the problem, reversed MCSP
(RMCSP), in which the (unsigned) strings are compared by the relation ∼=. Chen
et al. [3] observed that for any two related signed strings A and B, the sizes of the
optimal solutions of MCSP and SBR differ only by a constant multiplicative factor.

282 P. Kolman and T. Waleń

An analogous observation applies for related unsigned strings and the problems
reversed MCSP and SBR; we refer to the paper [11] for further details.

The rest of the paper is organized as follows. Section 2 is devoted to a simple
algorithm for k–MCSP that is based on the Hitting Set problem. In Section 3 we
describe how to modify the algorithm to get an O(k) approximation for k-MCSP.
In Section 4 we deal with the running time of the algorithm and we show how
to implement the algorithm in linear time, using the suffix tree data structure.
Finally, Section 5 describes how to modify the algorithm so that it works also for
the signed and reversed variants of MCSP and thus, for signed and unsigned SBR.

2 Common Partition Via Hitting Set

In Minimum Hitting Set Problem, we are given a set U and a collection S of
subsets of U , that is, S = {S1, . . . , Sk} such that Si ⊆ U for i = 1, . . . , k. The
task is to find a minimum hitting set for S which is a smallest set H ⊆ U such
that H∩Si
= ∅ for each i ∈ 1, . . . , k. Minimum Hitting Set problem is equivalent
to Minimum Set Cover [1].

We are going to use an algorithm for Minimum Hitting Set Problem as a
procedure for MCSP. The idea behind the algorithm is simple. Given the strings
A and B and a string X such that the number of occurrences of X in A is
larger (or smaller, resp.) than the number of occurrences of X in B, we know
that even in the minimum common partition of A and B at least one duo in
(an occurrence of) X in A (or in B, resp.) must be broken. The algorithm aims
at “hitting” (that is, cutting) all substrings of A and B that have a different
number of occurrences. This motivates the following definition.

For two strings A and X , let #substr(A, X) be the number of all occurrences
of the substring X in the string A. For a partition P = (P1, P2, . . . , Pm) and a
string X , we denote by #blocks(P , X) the number of blocks Pi = X in P .

Algorithm HS

input: strings A, B
construct an instance (U,S) of the Hitting Set problem:

U ← duos(A) ∪ duos(B)
T ←{X ∈ Σ∗ | #substr(A, X)
= #substr(B,X)}
S ←{duos(X) | X ∈ T }

solve (approximately) the Minimum Hitting Set problem:
Φ← a hitting set for (U,S)

transform the hitting set into a common partition:
A,B← for each duo xy ∈ Φ, cut all occurrences of xy in the strings A, B

output: (A,B)

Lemma 1. The partition (A,B) computed by the algorithm HS is a common
partition of the strings A and B.

Proof. The proof is by contradiction. Suppose that there exists a block X ∈ A
such that #blocks(A, X)
= #blocks(B, X); if there are several such blocks, take

Reversal Distance for Strings with Duplicates 283

as X the longest one. Since the block X is not cut by any duo from Φ we have
duos(X) ∩ Φ = ∅, and since Φ is a correct answer for the Hitting Set problem,
it holds that duos(X)
∈ S. We conclude that #substr(A, X) = #substr(B,X).
We aim to get a contradiction by inferring an equality for #blocks(A, X) and
#blocks(B, X).

Exploiting the fact that X is not cut by any duo from Φ, it is possible to cal-
culate the numbers #blocks(A, X) and #blocks(B, X) by the following formula
(by X $ Y we denote that X is a substring of Y and by X � Y that X is a
proper substring of Y):

#blocks(A, X) = #substr(A, X)−
∑

Y �A,X�Y

#substr(Y,X) ·#blocks(A, Y)

#blocks(B, X) = #substr(B,X)−
∑

Y �B,X�Y

#substr(Y,X) ·#blocks(B, Y)

By our choice, X is the longest block with #blocks(A, X)
= #blocks(B, X)
(informally, a “wrong” block); therefore for all strings Y satisfying X � Y
we have #blocks(A, Y) = #blocks(B, Y). We conclude that #blocks(A, X) =
#blocks(B, X), which is a contradiction.

Lemma 2. The algorithm HS finds a 2k-approximation of the minimum com-
mon partition (if an exact procedure for a minimum hiting set is available).

Proof. Consider any common partition A′,B′ of A and B. Then, every duo in a
minimum hitting set for the instance (U,S) must appear as a broken duo in A′

or B′. That is, (half of) the size of the minimum hitting set is a lower bound on
the size of the minimum common partition. Observing that the algorithm cuts
at most k duos for each duo in the set Φ, the claim follows.

Observe that by replacing the optimal procedure for Minimum Hitting Set by
an α-approximation procedure, the algorithm HS finds a 2kα-approximation of
the minimum common partition.

Unfortunately, Minimum Hitting Set problem is hard to approximate; to
achieve a good approximation ratio, we need to investigate special properties
of the instance (U,S). This is the subject of the next section.

3 O(k)-Approximation Ratio for MCSP

Let (Ao,Bo) denote a minimum common partition of strings A and B (if there
are several minimum common partitions, we choose any of them); we say that
the breaks in Ao and Bo are the optimal breaks. There are 2|Ao| − 2 optimal
breaks. We say that a substring X = ai . . . aj (resp., X = bi . . . bj) goes over an
optimal break if there exists an optimal break l, l + 1 in Ao (resp., in Bo) such
that i ≤ l < j.

Recall the definition of the set T = {X ∈ Σ∗ | #substr(A, X)
= #substr
(B,X)}; informally, T is the set of all wrong substrings. Note that in the instance

284 P. Kolman and T. Waleń

of the Hitting Set problem, most of the substrings in T are redunadant. To be
more specific, if X,Y ∈ T and X is a proper substring of Y , then we can remove
Y from the set T and a hitting set for {duos(X) | X ∈ T \ {Y }} will still be
a hitting set for S. Using this observation it is possible to substantially reduce
the size of the set S. In particular, the relation $ induces a partial order on the
set T ; let Tmin ⊆ T be the set of all minimal elements of T , with respect to the
relation $. Then Tmin satisfies the desired property

(P) if X,Y ∈ T , and X is a proper substring of Y , then Y
∈ Tmin,

and, at the same time, a hitting set for the set S′ = {duos(X) | X ∈ Tmin} is a
hitting set for S.

Lemma 3. If X ∈ Tmin then there exists an occurrence of X in A or in B that
goes over an optimal break.

Proof. Consider a string X ∈ Tmin and suppose that no occurrence of X in A
and B goes over an optimal break. Then every occurrence of X in A or B is a
substring of some block in the minimum common partition (Ao,Bo). Since Ao

and Bo consists of the same multiset of blocks and no occurrence of X goes over
an optimal break, we have #substr(A, X) = #substr(B,X). This implies X
∈ T ,
which is a contradiction.

Using the lemma, we assign to each string in Tmin an optimal break. In particular,
for X ∈ Tmin, let f(X) denote the optimal break that an occurrence of X in A
or in B goes over; if there is more than one such optimal break, we choose an
arbitrary one.

Example: For A = abaab, B = ababa, the minimum common partition is
(aba, ab), (ab, aba), ba ∈ Tmin and f(ba) = the break 2, 3 in the partition of B.

Lemma 4. If X,Y ∈ Tmin, X = x1, . . . , xl and f(X) = f(Y), then duos(Y) ∩
{x1x2, xl−1xl}
= ∅.

Proof. Since X and Y go over the same optimal break, their overlap has size at
least two. Moreover, since X is not a proper substring of Y and vice versa (by
property (P) and the assumptions of the lemma), the claim follows (cf. Figure 1).

X

Y

x1x2 xl

optimal break

Fig. 1. Illustration of Lemma 4

Reversal Distance for Strings with Duplicates 285

The consequence of Lemma 4 is the following. Let A be a partition of A and B
be a partition of B and let X = x1 . . . xl be a common substring of A and B
such that X ∈ Tmin. Then, by cutting all occurrences of x1x2 and xl−1xl in A
and B we “hit” (that is, we cut) also (a duo in) each string from Tmin that goes
over the optimal break f(X). Thus, if we choose for each optimal cut one string
from Tmin that goes over it (if there is any such string for the cut; if there is no
such string, we ignore this cut) and put together the first and the last duos of
each such string, then we get a hitting set for Tmin of size at most twice the size
of the minimum hitting set. Of course, we do not know the optimal breaks so
we have to construct the hitting set in a different way. The following algorithm
does it:

Algorithm Fast HS

input: strings A, B
compute a set T ′ such that Tmin ⊆ T ′ and T ′ is of size O(n)
Φ←∅
A← (A), B← (B)
for each X ∈ T ′ in order of increasing length do

if duos(X) ∩ Φ = ∅ then
add the first and last duo of X to Φ
cut all occurrences of the first and last duo of X in the partitions A,B

output: (A,B)

Lemma 5. If a string X passes the test duos(X)∩Φ = ∅ in the above algorithm,
then X ∈ Tmin.

Proof. Suppose, for a contradiction, that X passed the test yet X
∈ Tmin. Let Φ′

denote the set Φ just before processing the string X . The assumption X
∈ Tmin

implies that there exists a string X ′ ∈ Tmin such that X ′ is a proper substring of
X . Since |X ′| < |X |, the string X ′ has been processed before the string X and
therefore duos(X ′)∩Φ′
= ∅. Moreover, since duos(X ′) ⊆ duos(X), it holds that
duos(X)∩Φ′
= ∅, and therefore X cannot pass the test, which is a contradiction.

Theorem 1. The algorithm Fast HS computes a 4k-approximation of the min-
imum common partition of A and B.

Proof. If X1, X2 are two different strings for which the set Φ was increased then,
by Lemma 4, f(X1)
= f(X2). Thus, the set Φ was increased at most |Ao|+|Bo|−2
times and therefore the final set Φ contains at most 2 · (|Ao|+ |Bo| − 2) duos.

Since we are dealing with an instance of k-MCSP, each duo from the set Φ
introduces at most k cuts. It follows that

|A| ≤ k · 2 · (|Ao|+ |Bo| − 2) + 1 ≤ 4k · |Ao| .

Remark: The approximation ratio applies even if we measure the size of a com-
mon partition not by the number of blocks but by the number of breaks.

286 P. Kolman and T. Waleń

Lower bound. Let A = ba{ab}k−1 and B = {ab}k. Then the set Φ consists of two
duos {aa, ab} and the partition computed by the algorithm Fast HS has size
k+1 while the minimum common partition has size 3. Thus, the apporximation
ratio of the algorithm Fast HS is Ω(k).

4 Linear Running Time

We are going to describe how to implement the algorithm in linear time. The
linear implementation heavily uses the suffix tree data structure and the fact
that a suffix tree of a string of length m can be constructed in time O(m) for
constant size alphabets [12] and even for integer alphabets [7].

We start with the construction of the set T ′. Let $ and # be two characters
that do not appear in A. We compute the suffix tree τ of the string C = A$B#.
Recall that each leaf of the tree τ corresponds to a suffix of C. We mark by
A each leaf of τ that corresponds to a suffix starting in the substring A of C,
and we mark by B each leaf of τ that corresponds to a suffix starting in the
substring B of C. For each node v of τ we compute the number numA(v) of
leaves in the subtree of v marked by A and the number numB(v) of leaves in
the subtree of v marked by B; this requires time O(n), for strings A, B of length
n. For a node v of τ , let s(v) denote the concatenation of the labels of the
edges between the root and the node v and, for v
=root, let s′(v) denote the
concatenation of s(parent(v)) with the first character of the label of the edge
(parent(v), v). If s′(v) does not contain the characters $ and # we say that v is a
proper node. Observe that for each proper node v, numA(v) = #substr(A, s′(v))
and numB(v) = #substr(B, s′(v)). Thus, if numA(v)
= numB(v) we know that
s′(v) ∈ T . Once we have the suffix tree τ and the values numA(v) and numB(v)
for all vertices, we easily compute a set

T ′ = {s′(v) | v is a proper node and numA(v)
= numB(v)}

by traversing the tree τ in, say, breadth first search order. The set T ′ can be
computed in O(n) running time. It is also easy to observe that, the size of T ′

is bounded by O(n) (since the suffix tree consist of O(n) nodes). We also note
that for each string X ∈ Tmin there is a proper node v such that s′(v) = X and
numA(v)
= numB(v) which guarantees that Tmin ⊆ T ′.

To give an example, consider strings A = abaab and B = ababa. The suffix tree
of the string C = A$B# is given in Figure 2 and the relevant sets are as follows:

T ′ = {aa, aba, abaa, abab, ba, baa, bab}
Tmin = {aa, ba}
Φ = {aa, ba}
A = (ab, a, ab)
B = (ab, ab, a)

To finish the description of the fast implementation of the algorithm, it re-
mains to describe how to maintain the set Φ, how to test the condition

Reversal Distance for Strings with Duplicates 287

a
b $ababa#

#

ab$ababa# b # a $ababa#

a $ababa# ab$ababa#
ba#

#

ab$ababa#
ba#

#

A

A
B

B

A

B

A
B

B

A

Fig. 2. Suffix tree τ of the string C = abaab$ababa#. The larger dots denote the proper
nodes.

duos(X) ∩ Φ
= ∅ and how to realize the cuts. We employ a data structure
for the set–splitting problem [8]. In this problem, we are given a set consisting
of the integers {1, . . . ,m} and the task is to perform an intermixed sequence of
the following two operations:

– split(i) – splits the set containing i into two sets, one with all integers smaller
than i and the other with all integers greater than or equal to i,

– f ind(i) – returns the smallest integer in the set containing i.

Gabow and Tarjan [8] describe a data structure that requiresO(1) amortized time
for each operation. In our setting, we maintain for each partitionA and B a sepa-
rate data structure that stores information about cuts in that partition. Initially,
each structure consists of only one set, the set {1, . . . , n}. Each time when we add
a duo cd to Φ we perform the cuts of the partitions A and B as follows:

for each occurrence of the duo cd in A do
A.split(j+1), where j is the position of the current occurrence cd in A (i.e.,
ajaj+1 = cd)

for each occurrence of the duo cd in B do
B.split(j+1), where j is the position of the current occurrence cd in B (i.e.,
bjbj+1 = cd)

Since every duo appearing in A and B is processed at most once by the algorithm
the total number of split operations is at most O(n).

For an occurrence ai . . . aj = X (resp., bi, . . . , bj = X) of the substringX ∈ T ′,
it holds that duos(X) ∩ Φ = ∅ if and only if A.f ind(i) = A.f ind(j) (resp.,
B.f ind(i) = B.f ind(j)). This provides a way for testing the condition duos(X)∩
Φ
= ∅ in constant time.

Theorem 2. The above implementation of the algorithm Fast HS runs in
linear time.

288 P. Kolman and T. Waleń

5 Sorting by Reversals

One can easily modify the algorithms HS and Fast HS to work also for the
relation ∼=, for both signed and unsigned strings. We redefine #substr(A, S) so
that it counts occurrences of both S and −S in A; the definitions of the sets T ,
T ′ and Tmin remain unchanged. The new definition of #substr requires a small
change in the computation of the set T ′: we compute a suffix tree of the string
C = A#B$(−A)#(−B)$ (the brackets are only used to denote the scope of the
reversal operation). We also need a slight change in Lemma 3 and Lemma 4:

Lemma 3a. If X ∈ Tmin then there exists an occurrence of X or −X in A or
in B that goes over an optimal break.

Lemma 4a. If X,Y ∈ Tmin, X = x1, . . . , xl and f(X) = f(Y), then duos(Y)∩
{x1x2, xl−1xl, −(x1x2), −(xl−1xl)}
= ∅.
Finally, whenever the original algorithm cuts duos xy, the modified algorithm
also cuts duos −(xy). This increases the approximation ratio by a factor of two.

Theorem 3. The algorithm Fast HS computes in linear time Θ(k)-
approximation for signed, unsigned and reversed k-MCSP and for signed and
unsigned k-SBR.

6 Conclusion

We presented Θ(k)-approximation algorithms for signed and unsigned k-MCSP
and k-SBR, running in time O(n). A challenging open question is whether it is
possible to get a nontrivial approximation ratio independent of the parameter k
(or at least less dependent, say an approximation ratio O(log k)).

References

1. G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among con-
vex optimization problems. Journal of Computer and System Sciences, 21(1):136–
153, 1980.

2. A. Caprara. Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM Journal on Discrete Mathematics, 12(1):91–110, 1999.

3. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment
of orthologous genes via genome rearrangement. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2(4):302–315, 2005.

4. D. A. Christie and R. W. Irving. Sorting strings by reversals and by transpositions.
SIAM Journal on Discrete Mathematics, 14(2):193–206, 2001.

5. M. Chrobak, P. Kolman, and J. Sgall. The greedy algorithm for the minimum
common string partition problem. ACM Transactions on Algorithms, 1(2):350–
366, 2005.

6. G. Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. In Proceedings of the 13th Annual ACM-SIAM Symposium On Discrete
Mathematics (SODA), pages 667–676, 2002.

Reversal Distance for Strings with Duplicates 289

7. M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings of
the 38th Annual Symposium on Foundations of Computer Science (FOCS), pages
137–143, 1997.

8. H. N. Gabow and R. E. Tarjan. A linear-lime algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences, 30(2):209–221, 1985.

9. A. Goldstein, P. Kolman, and J. Zheng. Minimum Common String Partition Prob-
lem: Hardness and Approximations. The Electronic Journal of Combinatorics,
12(1), 2005.

10. S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: polyno-
mial algorithm for sorting signed permutations by reversals. Journal of the ACM,
46(1):1–27, 1999.

11. P. Kolman. Approximating reversal distance for strings with bounded number of
duplicates. In Proceedings of the 30th International Symposium on Mathemati-
cal Foundations of Computer Science (MFCS), volume 3618 of Lecture Notes in
Computer Science, pages 580–590, 2005.

12. P. Weiner. Linear pattern matching algorithms. In 14th IEEE Symposium on
switching and automata theory, pages 1–11, 1973.

Approximating the Unweighted k-Set Cover

Problem: Greedy Meets Local Search

Asaf Levin

Department of Statistics, The Hebrew University, Jerusalem, Israel
levinas@mscc.huji.ac.il

Abstract. In the unweighted set-cover problem we are given a set of el-
ements E = {e1, e2, . . . , en} and a collection F of subsets of E. The prob-
lem is to compute a sub-collection SOL ⊆F such that Sj∈SOL Sj = E

and its size |SOL| is minimized. When |S| ≤ k for all S ∈ F we obtain
the unweighted k-set cover problem. It is well known that the greedy
algorithm is an Hk-approximation algorithm for the unweighted k-set
cover, where Hk = k

i=1
1
i

is the k-th harmonic number, and that this
bound on the approximation ratio of the greedy algorithm, is tight for
all constant values of k. Since the set cover problem is a fundamental
problem, there is an ongoing research effort to improve this approxi-
mation ratio using modifications of the greedy algorithm. The previous
best improvement of the greedy algorithm is an Hk − 1

2
-approximation

algorithm. In this paper we present a new Hk − 196
390

-approximation al-
gorithm for k ≥ 4 that improves the previous best approximation ratio
for all values of k ≥ 4. Our algorithm is based on combining local search
during various stages of the greedy algorithm.

1 Introduction

In the weighted set-cover problem we are given a set of elements E =
{e1, e2, . . . , en} and a collection F of subsets of E, where ∪S∈FS = E and
each S ∈ F has a positive cost cS . The goal is to compute a sub-collection
SOL ⊆ F such that

⋃
S∈SOL S = E and its cost

∑
S∈SOL cS is minimized. Such

a sub-collection of subsets is called a cover. When we consider instances of the
weighted set-cover such that each Sj has at most k elements (|S| ≤ k for all
S ∈ F), we obtain the weighted k-set cover problem. The unweighted
set cover problem and the unweighted k-set cover problem are the
special cases of the weighted set cover and of weighted k-set cover,
respectively, where cS = 1 ∀S ∈ F .

It is well known (see [2]) that a greedy algorithm is an Hk-approximation
algorithm for the weighted k-set cover, where Hk =

∑k
i=1

1
i is the k-th harmonic

number, and that this bound is tight even for the unweighted k-set cover problem
(see, [12,15]). For unbounded values of k, Slav́ık [19] showed that the approx-
imation ratio of the greedy algorithm for the unweighted set cover problem is
lnn− ln lnn+Θ(1). Feige [5] proved that unless NP ⊆ DTIME(npolylog n) the
unweighted set cover problem cannot be approximated within a factor (1−ε) lnn,

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 290–301, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximating the Unweighted k-Set Cover Problem 291

for any ε > 0. Raz and Safra [18] proved that if P
= NP then for some constant
c, the unweighted set cover problem cannot be approximated within a factor
c logn. This result shows that the greedy algorithm is an asymptotically best
possible approximation algorithm for the weighted and unweighted set cover
problem (unless NP ⊆ DTIME(npolylog n)). The unweighted k-set cover prob-
lem is known to be NP-complete [13] and MAX SNP-hard for all k ≥ 3 [3,14,16].
Another algorithm for the weighted set cover problem by Hochbaum [10] has
an approximation ratio that depends on the maximum number of subsets that
contain any given item (the local-ratio algorithm of Bar-Yehuda and Even [1]
has the same performance guarantee). See Paschos [17] for a survey on these
results.

In spite of the above bad news Goldschmidt, Hochbaum and Yu [7] modified
the greedy algorithm for the unweighted set cover and showed that the resulting
algorithm has a performance guarantee of Hk − 1

6 . Halldórsson [8] presented
an algorithm based on local search that has an approximation ratio of Hk − 1

3
for the unweighted k-set cover, and a (1.4 + ε)-approximation algorithm for
the unweighted 3-set cover. Duh and Fürer [4] further improved this result and
presented an (Hk − 1

2)-approximation algorithm for the unweighted k-set cover.
We will base our algorithm on the algorithm of Duh and Fürer [4], and therefore
we will review their algorithm and results in Section 3. All of these improvements
[7,8,4] are based on running the greedy algorithm until each new subset covers
at most t new elements (where t = 2 in [7] and larger values of t in [8,4]) and
then switch to another algorithm.

Regarding approximation algorithms for the weighted k-set cover problem
within a factor better than Hk, a first improvement step was given by Fujito
and Okumura [6] who presented Hk − 1

12 -approximation algorithm for the k-
set cover problem where the cost of each subset is either 1 or 2. More recently,
Hassin and Levin [9] provided an

(
Hk − k−1

8k9

)
-approximation algorithm.

The maximum set packing problem is the following related problem: We
are given a set of elements E = {e1, e2, . . . , en} and a collection F of subsets of E,
where ∪S∈FS = E, and the goal is to compute a maximum size set packing, i.e., a
sub-collection F ′⊆ F of disjoint subsets. Hurkens and Schrijver [11] proved that
a local-search algorithm for the maximum set packing problem where each subset
in F has at most k elements, is a

(
2
k − ε

)
-approximation algorithm. Therefore,

this local-search algorithm has a better performance guarantee than the greedy
selection rule that returns any maximal sub-collection. The greedy selection rule
has an approximation ratio of 1

k .
We first observe that w.l.o.g., there is an optimal solution to the set cover

problem such that each element is covered by exactly one subset of the optimum:
Let an optimal solution to the problem consist of a collection of sets S∗

j , j ∈
J∗, with ∪j∈J∗S∗

j = E. We now construct another optimal solution formed of
element-disjoint sets S′

j where S′
j ⊆ S∗

j for all j ∈ J∗. To do that, we assign
each element e ∈ E to the smallest index set S∗

j , j ∈ J∗ that contains e. We
modify the instance by adding the sets S′

j for all j to the collection F . If the
algorithm or the optimal solution decides to pick such a set S′

j , we interpret

292 A. Levin

this as picking the set S∗
j . Henceforth, any optimal solution will be considered

to have this disjointness property, so each e ∈ E∗ belongs to exactly one set S∗
j .

We consider an optimal solution OPT that satisfies the disjointness property.
We define a j-set to be a set with j elements. We fix an optimal solution OPT ,

and we say that a k-set is an optimal k-set if it is contained in OPT .

Paper overview: In Section 2 we review the greedy algorithm for the un-
weighted minimum k-set cover problem, and its analysis. In Section 3 we review
the semi-local optimization algorithm of [4]. In Section 4 we present our im-
proved algorithm. We analyze its performance in Section 5, i.e., we show that
our algorithm is an

(
Hk − 196

390

)
-approximation algorithm for the unweighted k-

set cover problem where k ≥ 4, improving the earlier
(
Hk − 1

2

)
-approximation

algorithm of [4]. We conclude in Section 6 by discussing open questions.

2 The Greedy Algorithm

In this section we review the greedy algorithm for the unweighted k-set cover
problem and the proof of its performance guarantee.

The greedy algorithm starts with an empty collection of subsets in the solution
and no item being covered. Then, it iterates the following procedure until all
items are covered:

Let wS be the number of uncovered items in a set S ∈ F , and the current
ratio of S is rS = 1

wS
. Let S∗ be a set such that rS∗ is minimized. The algorithm

adds S∗ to the collection of subsets of the solution, defines the items of S∗ as
covered, and assigns a price of rS∗ to all the items that are now covered but were
uncovered prior to this iteration (i.e., the items that were first covered by S∗).

Johnson [12], Lovász [15] and Chvátal [2] showed that the greedy algorithm
is an Hk-approximation algorithm for the unweighted k-set cover.

Chvátal’s proof is the following: first note that the cost of the greedy solution
equals the sum of prices assigned to the items. Second, consider a set S that
belongs to an optimal solution OPT . Then, OPT pays 1 for S. When the i-th
item of S is covered by the greedy algorithm, the algorithm could choose S as a
feasible set with a current ratio of 1

|S|−i+1 . Therefore, the price assigned to the
this item is at most 1

|S|−i+1 . It follows that the total price assigned to the items

of S is at most
∑|S|

i=1
1

|S|−i+1 =
∑|S|

i′=1
1
i′ ≤ Hk, and therefore, the approximation

ratio of the greedy algorithm is at most Hk.

3 The Semi-local Optimization Algorithm

Duh and Fürer [4] suggested the following procedure to approximate the un-
weighted 3-set cover problem. In a pure local improvement step, we replace a
number of sets with fewer sets to form a new cover with a reduced cost. To define
a semi-local step, they observed that once the 3-sets are selected the remaining
instance can be solved optimally in polynomial time. Thus a local change in the

Approximating the Unweighted k-Set Cover Problem 293

3-sets allows any global changes in the 2-sets and 1-sets and such a change is
called a semi-local change.

They allowed the algorithm to remove one 3-set and insert at most a pair of
3-sets if one of the following happens: either the total cost is reduced, or the
total cost remains the same and the number of 1-sets in the resulting solution
is reduced (thus the total cost is the primary objective whereas the number of
1-sets is a secondary objective). This results in the approximation algorithm for
the unweighted 3-set cover of [4]. They showed that this is a 4

3 -approximation
algorithm. More precisely, the following proposition was proved in [4].

Proposition 1. Assume that an optimal solution for the unweighted 3-set cover
instance has b1, b2, and b3 1-sets, 2-sets and 3-sets, respectively. Then the solu-
tion that the semi-local optimization algorithm returns, costs at most b1+b2+ 4

3b3.
Moreover, the number of 1-sets in the solution that the algorithm returns, is at
most b1.

In order to extend their result to larger values of k, they suggested the following
algorithm:

1. Greedy Phase. For j = k down to 6 do:
greedily choose a maximal collection of j-sets.

2. Restricted Phase. For j = 5 down to 4 do:
choose a maximal collection of j-sets with the restriction that the choice of
these j-sets does not increase the number of 1-sets.

3. Semi-local Optimization Phase. Run the semi-local optimization algo-
rithm on the remaining instance.

Note that the following question is answered within polynomial time during
the Restricted phase: Does the addition of a j-set S to the current solution in-
crease the number of 1-sets in the resulting solution (returned by the algorithm)?
Duh and Fürer proved that this algorithm is an

(
Hk − 1

2

)
-approximation, and

they also showed that this bound is tight for the semi-local optimization
algorithm.

4 The Algorithm

In this section we present our modification of the semi-local optimization algo-
rithm where we use a local-search algorithm during the phase where each new
set covers exactly four previously uncovered elements.

Algorithm A

1. Greedy Phase. For j = k down to 6 do:
greedily choose a maximal collection of disjoint j-sets (each covering exactly
j new elements).

2. Restricted Phase. Choose a maximal collection of disjoint 5-sets with the
restriction that the choice of these 5-sets does not increase the number of
1-sets.

294 A. Levin

3. Local-Search Phase. Choose a collection of disjoint 4-sets such that the
choice of these 4-sets does not increase the number of 1-sets and this col-
lection has a local maximum size. The requirement of local maximum size
means that removing a 4-set from this collection does not allow us to add at
least a pair of 4-sets (without increasing the number of 1-sets).

4. Semi-Local Optimization Phase. Run the semi-local optimization algo-
rithm on the remaining instance.

In Phase 3 we are using local-search whose neighborhood is defined by remov-
ing one 4-set and inserting at least a pair of 4-sets as long as the number of 1-sets
in the returned solution does not increase. The use of this local-search procedure
is motivated by the approximation algorithm of [11] for the maximum set pack-
ing problem. This improved phase is the corner stone on which our improved
approximation ratio is based.

Each iteration takes polynomial time because checking whether the number
of 1-sets in the resulting solution increases, takes polynomial time. Therefore,
Algorithm A is a polynomial time algorithm that returns a feasible solution.
Therefore, we establish the following lemma:

Lemma 1. For every value of k, Algorithm A returns a feasible solution in
polynomial time.

In the next section we analyze the performance guarantee of Algorithm A.

5 The Analysis of Algorithm A

In this section we analyze the performance guarantee of Algorithm A. We con-
sider an optimal solution OPT , and bound the performance guarantee of A.
Recall that we assume that OPT is a partition of the element set E. We now
further characterize the structure of OPT .

Lemma 2. W.l.o.g., each set of OPT is a k-set.

Proof. Assume that the claim does not hold on an instance I. We create a new
instance I ′ such that the optimal solution OPT ′ for I ′ costs k times the cost of
OPT , and the solution returned by A on I ′ costs more than k times the solution
returned by algorithm A on I, and we will conclude that if there is a bad example
for the algorithm there is a bad example for the algorithm that shows the same
approximation ratio such that the property of the lemma holds.

To do so we first take k disjoint copies of the instance I. Clearly, the optimal
solution ˆOPT for this new instance costs exactly k times the cost of OPT , and
it is a union of k copies of OPT . Then, we add new elements to ˆOPT ’s existing
sets so that each set in this sub-collection is a k-set. Note that the number of the
new elements is divisible by k. Last, we add new k-sets of these new elements,
such that the algorithm picks these new k-sets (of the new elements) in its first
steps, and then continue like it acts on I on each of the k copies of I. Therefore,
OPT ′ costs exactly k times the cost of OPT (we can use the sets of ˆOPT that

Approximating the Unweighted k-Set Cover Problem 295

we increased), however the cost of the solution returned by A on I ′ is strictly
larger than k times the cost of the solution returned by A on I. ��
Next, we allocate a price for each element in the following way:

– For an element that is covered by an i-set during Phases 1, 2 and 3 of
Algorithm A, we allocate a price of 1

i .
– We consider special 2-sets and 3-sets that are named sibling 2-sets defined as

follows (see [4] for introduction of this term): a 2-set or a 3-set S chosen by
the semi-local optimization phase such that one of the elements in S is the
last uncovered element of an optimal k-set (this element is called the primary
element) and the remaining elements of S belong to a common optimal k-set
(i.e., to the same set in the optimal solution). The elements of a sibling 2-set
that are not primary are called secondary elements. A sibling 2-set is the
result of the fact that the Semi-Local Optimization phase does not create a
new singleton, and therefore, if an optimal k-set has k − 1 covered elements
at the end of Phase 3 out of which at least one is covered during Phases 2 or
3, then the last element belongs to at least a 2-set (and is not a singleton).
We allocate a cost of α = 4

5 for the primary element of a sibling 2-set, and
for each of its secondary elements we allocate a cost of 1 − α = 1

5 .
– For the other elements that we cover during Phase 4, we assign at most a unit

price for each selected set such that the following holds (such an allocation
of prices is feasible according to Proposition 1):
• For each three elements that belong to a common k-set of OPT , are

covered during Phase 4, and do not intersect with a sibling 2-set, we
assign a total price of 4

3 .
• For each pair of elements that belong to a common k-set of OPT , are

covered during Phase 4, and do not intersect with a sibling 2-set, we
assign a total price of one unit.

By the allocation of the prices and Proposition 1, we conclude the following lemma:

Lemma 3. The cost of the solution returned by Algorithm A is at most the total
price of all the elements.

Next, we define a bad set. Given an optimal k-set S, if k ≥ 5, then S is a bad
set if at the end of Phase 1 S has exactly five uncovered elements from which
exactly one element is covered during Phase 3 and one of the following holds:
Either exactly one element of S is covered during Phase 2 and none of the three
remaining elements belongs to a sibling 2-set, or none of the elements of S is
covered during Phase 2 and exactly one element of S belongs to a sibling 2-set.
If k = 4, then S is a bad set if exactly one of its elements is covered during Phase
3. An optimal k-set that is not bad is a good set.

The outline of the proof of our improved approximation ratio is as follows:
in Lemma 4 we will prove that the total price of an optimal set is better than
Hk − 1

2 if the optimal set is good and it equals Hk − 1
2 for bad sets. Afterwards,

in Lemma 5 we will show that there is a constant proportion of the optimal sets
that have to be good sets. Combining the two results together we will establish
our improved approximation ratio.

296 A. Levin

Lemma 4. Assume that k ≥ 4. The total price assigned to an optimal bad k-set
is at most ρb = Hk − 1

2 . The total price assigned to an optimal good k-set is at
most ρg = Hk − 16

30 .

Proof. Let S be an optimal k-set. Denote by price(S) the total price assigned
to the elements of S. First assume that S is a bad set. If k ≥ 5, then the j-th
covered element from S during Phase 1 is assigned a price of at most 1

k−j+1 , the
element that is covered during Phase 2 is assigned a price of 1

5 (if it exists),
the element that belongs to a sibling 2-set is assigned a price of 1

5 (if it ex-
ists), the element that is covered during Phase 3 is assigned a price of 1

4 , and
the remaining three elements are assigned a total price of at most 4

3 . Hence,
price(S) ≤

∑k
i=6

1
i + 1

5 + 1
4 + 4

3 = Hk − 1
2 = ρb. If k = 4, then S has a single

element covered during Phase 3 that pays a price of 1
4 and the three remaining

elements are assigned a total price of at most 4
3 . So again price(S) ≤ Hk− 1

2 = ρb.
It remains to prove the second part of the lemma regarding the total price

of a good set. So assume that S is a good set. We denote by Ng the number of
elements of S that remains uncovered at the end of Phase 1. We denote by Nr

(Nl) the number of elements of S that are covered during Phase 2 (Phase 3).
Our proof is based on a detailed case analysis.

First assume that k = 4. Then, the Greedy phase and the Restricted phase
do not select sets, and therefore Ng = 4 and Nr = 0.

– Assume that Nl = 4. Then, each element of S is covered during Phase 3 and
pays a price of 1

4 . Therefore, price(S) = 1 < H4 − 16
30 = ρg.

– Assume that Nl = 3. Then, each element of S that is covered during Phase 3
pays a price of 1

4 , and the remaining element pays a price of at most 4
5 (this is

because since no singletons are created, this remaining element either belongs
to a sibling 2-set and then it pays at most 4

5 , or it belongs to a 3-set and in this
case it pays 1

3). Therefore, price(S) ≤ 3
4 + 4

5 = 93
60 = 125

60 −
32
60 = H4− 16

30 = ρg.
– Assume that Nl = 2. Then, each element of S that is covered during Phase

3 pays a price of 1
4 . The two remaining elements pay a total price of at most

1. Thus, price(S) ≤ 3
2 < ρg.

– Assume that Nl = 1. Then, the element of S that is covered during Phase
3, pays a price of 1

4 . Since S is a good set, it contains at least one element
that belongs to a sibling 2-set that pays 1

5 (since Nl = 1, it is not the
primary element). The other two elements of S have total price of at most
1. Therefore, price(S) ≤ 1

4 + 1
5 + 1 = 87

60 <
93
60 = ρg.

– Assume that Nl = 0. Since S is not added to the solution during Phase 3, it
must contain an element that belongs to a sibling 2-set, and pays a price of 1

5 .
The other three elements pay a total price of at most 4

3 (this is also the case if
some of them belong to sibling 2-sets). Therefore, price(S) ≤ 1

5+ 4
3 = 92

60 < ρg

It remains to consider the case where k ≥ 5. First note that by the greedy
selection rule during the greedy phase, we conclude that Ng ≤ 5. Moreover, the
j-th covered element from S during the greedy phase (for 1 ≤ j ≤ k − 5) is
assigned a price of at most 1

k−j+1 . Moreover, since the Restricted phase and the

Approximating the Unweighted k-Set Cover Problem 297

Local-Search phase do not create new singletons, we conclude that if Ng ≥ 2,
then the maximum price of an element of S is at most 4

5 .

– Assume that Ng ≤ 2. Then, the k − 4-th, the k − 3-rd, and the k − 2-nd
covered elements from S are covered during Phase 1, and therefore assigned
a price of at most 1

6 for each. The last two elements of S are assigned a total
price of at most 4

5 + 1
4 (this is the case where one of them is covered during

Phase 3 and the last element is from sibling 2-set, and the other cases cause
a smaller cost). Therefore, price(S) ≤ Hk−H5 + 3

6 + 4
5 + 1

4 = Hk−H5+ 31
20 =

Hk − 137
60 + 93

60 = Hk − 44
60 < ρg.

– Assume that Ng = 3. Then, the k − 4-th and the k − 3-rd covered elements
from S are covered during Phase 1, and therefore assigned a price of at most
1
6 for each.
• If Nr + Nl = 0, then the last three elements of S are covered during

Phase 4, and pay a total price of at most 4
3 . Therefore, price(S) ≤

Hk −H5 + 2
6 + 4

3 = Hk − 137
60 + 5

3 = Hk − 37
60 < ρg.

• If Nr +Nl = 1, then the last two elements of S are covered during Phase
4, and pay a total price of at most 1. The k−2-nd element of S is covered
during either Phase 2 or Phase 3, and so it pays a price of at most 1

4 .
Therefore, the last three elements of S pay a total price of at most 5

4 <
4
3

and again price(S) < ρg.
• If Nr + Nl = 2, then the last uncovered element pays at most 4

5 (if it
belongs to a sibling 2-set, and otherwise it pays less). The k − 2-nd and
the k − 1-st covered elements from S are covered during either Phase 2
or Phase 3, and therefore each of these is assigned a price of at most 1

4 .
Again the last three elements of S pay at most 4

5 + 2
4 <

4
3 , and therefore

price(S) < ρg.
• If Nr + Nl = 3, then each of the last three elements of S pays a price of

at most 1
4 , and in total they pay less than 4

3 . Therefore, price(S) < ρg.
– Assume that Ng = 4. Then, the k − 4-th covered element from S is covered

during Phase 1, and therefore pays a price of at most 1
6 . Among the last

four elements of S there is at least one element that pays at most 1
4 . To see

this fact note that if none of the elements of S belong to a set that is chosen
during Phase 2 or Phase 3, then S has an element that belongs to a sibling
2-set (otherwise, we add S to the solution during Phase 3 contradicting the
maximality of the collection that we choose during Phase 3), and in each
of these cases the element pays at most 1

4 . The other three elements pay at
most max{ 4

3 ,
4
5 + 2

4} = 4
3 . Therefore, price(S) ≤ Hk − H5 + 1

6 + 1
4 + 4

3 =
Hk − 137

60 + 105
60 = Hk − 32

60 = ρg.
– Assume that Ng = 5.

• Assume that Nr = Nl = 0. By the maximality of the sets chosen during
Phase 3, we conclude that S has at least two elements that belong to
sibling 2-sets, and therefore each of these pays 1

5 . The other three ele-
ments of S pay at most 4

3 . Therefore, price(S) ≤ Hk − H5 + 2
5 + 4

3 =
Hk − 137

60 + 104
60 = Hk − 33

60 < ρg.
• Assume that Nr = 1 and Nl = 0. The element of S that is covered

during Phase 2, pays a price of 1
5 . By the maximality of the sets chosen

298 A. Levin

during Phase 3, we conclude that S has an element that belongs to a
sibling 2-set and pays 1

5 . The remaining three elements pay at most 4
3 .

Therefore, price(S) ≤ Hk −H5 + 1
5 + 1

5 + 4
3 = Hk − 33

60 < ρg.
• Assume that Nr ≥ 2. The elements of S that are covered during Phase

2 pay a price of 1
5 each. The last three elements pay a total price of at

most 4
3 . Therefore, price(S) ≤ Hk −H5 + 2

5 + 4
3 = Hk − 33

60 < ρg.
• Assume that Nr ≤ 1 and Nl = 1. Since S is a good set, we conclude

that either Nr = 1 and S has an element that belongs to a sibling 2-
set, or S has at least two elements that belong to sibling 2-sets. The
element of S that is covered during Phase 2 (if it exists) pays a price
of 1

5 , the element of S that is covered during Phase 3 pays a price of
1
4 , and each element of S that belongs to a sibling 2-set pays 1

5 . The
two last remaining elements have a total price of at most 1. Therefore,
price(S) ≤ Hk −H5 + 1

5 + 1
4 + 1

5 + 1 = Hk − 137
60 + 99

60 = Hk − 38
60 < ρg.

• Assume that Nr ≤ 1 and Nl = 2. By the maximality of the sets that
we choose during Phase 2, we conclude that if Nr = 0 then S has an
element that belongs to a sibling 2-set and pays 1

5 . Therefore, S has an
element that pays 1

5 (this is the one that is covered during Phase 2, or
the one that belongs to a sibling 2-set). Each of the elements of S that is
covered during Phase 3, pays a price of 1

4 . The two remaining elements
pay a total price of 1. Therefore, price(S) ≤ Hk − H5 + 1

5 + 2
4 + 1 =

Hk − 137
60 + 102

60 = Hk − 35
60 < ρg.

• Assume that Nr ≤ 1 and Nl = 3. By the maximality of the sets that
we choose during Phase 2, we conclude that if Nr = 0, then S has an
element that belongs to a sibling 2-set and pays 1

5 . Therefore, S has an
element that pays 1

5 (this is the one that is covered during Phase 2, or
the one that belongs to a sibling 2-set). Each of the elements of S that is
covered during Phase 3, pays a price of 1

4 . The remaining element pays
at most 4

5 . Therefore, price(S) ≤ Hk−H5+ 1
5 + 3

4 + 4
5 = Hk− 137

60 + 105
60 =

Hk − 32
60 = ρg.

• Assume that Nr ≤ 1 and Nl = 4. By the maximality of the sets that
we choose during Phase 2, we conclude that if Nr = 0, then S has an
element that belongs to a sibling 2-set and pays 1

5 . Therefore, S has
an element that pays 1

5 (this is the one that is covered during Phase 2,
or the one that belongs to a sibling 2-set). Each of the elements of S
that is covered during Phase 3, pays a price of 1

4 . Therefore, price(S) ≤
Hk −H5 + 1

5 + 4
4 = Hk − 137

60 + 72
60 = Hk − 65

60 < ρg.
��

Denote by nb the number of bad sets in OPT and by ng the number of good
sets in OPT .

Lemma 5. nb ≤ 12ng.

Proof. Consider a bad set S in OPT . At the beginning of Phase 3, S has four
uncovered elements such that none of these belong to a sibling 2-set. Since S is
a bad set we cover exactly one of its elements during Phase 3. Consider a set S′

Approximating the Unweighted k-Set Cover Problem 299

chosen in Phase 3. Then, there is a good set S′′ ∈ OPT such that S′′ ∩ S′
= ∅.
To see this note that otherwise during Phase 3 we could replace S′ by the bad
sets it intersects (each such set has four elements that consist of a 4-set that we
could add to the solution without increasing the number of singletons). Since
we did not apply this step, we conclude that at least one of its intersecting sets
from OPT is a good set.

A good set S ∈ OPT can intersect at most four sets that we choose during
Phase 3. These four sets can intersects at most 12 other sets of OPT . These 12
sets might be bad sets. Therefore, the claim follows. ��

Theorem 1. Algorithm A is a
(
Hk − 196

390

)
-approximation algorithm for the un-

weighted k-set cover problem.

Proof. By Lemma 1, the algorithm returns a feasible solution in polynomial
time. It remains to establish its approximation ratio.

A ≤ ng · ρg + nb · ρb

= ng ·
(
Hk −

16
30

)
+ nb ·

(
Hk −

1
2

)
≤ (ng + nb) ·

[
1
13
·
(
Hk −

16
30

)
+

12
13
·
(
Hk −

1
2

)]
= OPT ·

[
1
13
·
(
Hk −

16
30

)
+

12
13
·
(
Hk −

1
2

)]
= OPT ·

(
Hk −

196
390

)
,

where the first inequality follows by Lemma 3, the first equation follows by
Lemma 4, the second inequality follows by Lemma 5, the second equation follows
because the cost of OPT is exactly nb + ng, and the last equation follows by
simple algebra. ��

6 Concluding Remarks

In this paper we addressed the fundamental problem of unweighted k-set cover
problem, and introduced an improvement over the previously best known algo-
rithm for all values of k such that k ≥ 4. Although we obtain a small improvement
over the algorithm of Duh and Fürer [4], we think that our analysis is not tight
and the approximation ratio of our algorithm can be improved. Improving the
analysis of our Algorithm A is left for future research.

In this paper we showed that incorporating a local-search procedure in vari-
ous stages of the greedy algorithm instead of only where each set has at most
three uncovered elements, provides a better approximation ratio. We conjecture
that incorporating local-search procedures in each greedy phase decreases the

300 A. Levin

approximation ratio further. Such an algorithm replaces the Greedy phase by
the following phase:

Improved phase: For j = k, k− 1, k− 2, . . . , 6 do: apply local-search to choose
an approximated maximum size collection of j-sets (each covering exactly j new
elements).

It is easily noted that using the Improved phase instead of the Greedy phase in
Algorithm A does not harm the approximation ratio of the resulting algorithm.
We leave the analysis of this improved algorithm for future research.

References

1. R. Bar-Yehuda and S. Even, ”A linear time approximation algorithm for the
weighted vertex cover problem,” Journal of Algorithms, 2, 198-203, 1981.

2. V. Chvátal, ”A greedy heuristic for the set-covering problem,” Mathematics of
Operations Research, 4, 233-235, 1979.

3. P. Crescenzi and V. Kann, ”A compendium of NP optimization problems”,
http://www.nada.kth.se/theory/problemlist.html, 1995.

4. R. Duh and M. Fürer, ”Approximation of k-set cover by semi local optimization,”
Proc. STOC 1997, 256-264, 1997.

5. U. Feige, “A threshold of ln n for approximating set cover”, Journal of the ACM,
45, 634-652, 1998.

6. T. Fujito and T. Okumura, ”A modified greedy algorithm for the set cover problem
with weights 1 and 2,” Proc. ISAAC 2001, 670-681, 2001.

7. O. Goldschmidt, D. S. Hochbaum and G. Yu, ”A modified greedy heuristic for the
set covering problem with improved worst case bound,” Information Processing
Letters, 48, 305-310, 1993.

8. M. M. Halldórsson, ”Approximating k set cover and complementary graph color-
ing,” Proc. IPCO 1996, 118-131, 1996.

9. R. Hassin and A. Levin, ” A better-than-greedy approximation algorithm for the
minimum set cover problem,” SIAM J. Computing, 35, 189-200, 2006.

10. D. S. Hochbaum, ”Approximation algorithms for the weighted set covering and
node cover problems,” SIAM Journal on Computing, 11, 555-556, 1982.

11. C. A. J. Hurkens and A. Schrijver, “On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems”, SIAM Journal on Discrete Mathematics, 2, 68-72, 1989.

12. D. S. Johnson, ”Approximation algorithms for combinatorial problems,” Journal
of Computer and System Sciences, 9, 256-278, 1974.

13. R. M. Karp, ”Reducibility among combinatorial problems,” Complexity of com-
puter computations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, New-
York, 1972, 85-103.

14. S. Khanna, R. Motwani, M. Sudan and U. V. Vazirani, ”On syntactic versus com-
putational views of approximability,” SIAM Journal on Computing, 28, 164-191,
1998.

15. L. Lovász, ”On the ratio of optimal integral and fractional covers,” Discrete Math-
ematics, 13, 383-390, 1975.

16. C. H. Papadimitriou and M. Yannakakis, ”Optimization, approximation and com-
plexity classes,” Journal of Computer System Sciences, 43, 425-440, 1991.

Approximating the Unweighted k-Set Cover Problem 301

17. V. T. Paschos, ”A survey of approximately optimal solutions to some covering and
packing problems,” ACM Computing Surveys, 29, 171-209, 1997.

18. R. Raz and S. Safra, “A sub-constant error-probability low-degree test, and sub-
constant error-probability PCP characterization of NP”, Proc. STOC 1997, 475-
484, 1997.

19. P. Slav́ık, ”A tight analysis of the greedy algorithm for set cover,” Journal of
Algorithms, 25, 237-254, 1997.

Approximation Algorithms for

Multi-criteria Traveling Salesman Problems�

Bodo Manthey1,		 and L. Shankar Ram2

1 Yale University, Department of Computer Science
manthey@cs.yale.edu

2 ETH Zürich, Institut für Theoretische Informatik
shankar.lakshminarayanan@ag.ch

Abstract. In multi-criteria optimization, several objective functions are
to be optimized. Since the different objective functions are usually in
conflict with each other, one cannot consider only one particular solution
as optimal. Instead, the aim is to compute so-called Pareto curves. Since
Pareto curves cannot be computed efficiently in general, we have to be
content with approximations to them.

We are concerned with approximating Pareto curves of multi-criteria
traveling salesman problems (TSP). We provide algorithms for comput-
ing approximate Pareto curves for the symmetric TSP with triangle in-
equality (Δ -STSP), symmetric and asymmetric TSP with strengthened
triangle inequality (Δ(γ) -STSP and Δ(γ) -ATSP), and symmetric and
asymmetric TSP with weights one and two (STSP(1, 2) and ATSP(1, 2)).

We design a deterministic polynomial-time algorithm that computes
(1 + γ + ε)-approximate Pareto curves for multi-criteria Δ(γ) -STSP
for γ ∈ [1

2
, 1]. We also present two randomized approximation algo-

rithms for multi-criteria Δ(γ) -STSP achieving approximation ratios of
2γ3+γ2+2γ−1

2γ2 +ε and 1+γ
1+3γ−4γ2 +ε, respectively. Moreover, we design ran-

domized approximation algorithms for multi-criteria Δ(γ) -ATSP (ratio
1
2

+ γ3

1−3γ2 + ε for γ < 1/
√

3), STSP(1, 2) (ratio 4/3) and ATSP(1, 2)

(ratio 3/2).
The algorithms for Δ(γ) -ATSP, STSP(1, 2), and ATSP(1, 2) as well

as one algorithm for Δ(γ) -STSP are based on cycle covers. Therefore, we
design randomized approximation schemes for multi-criteria cycle cover
problems by showing that multi-criteria graph factor problems admit
fully polynomial-time randomized approximation schemes.

1 Introduction

In many practical optimization problems, there is not only one single objective
function to measure the quality of a solution, but there are several such functions.
� A full version of this work is available at http://arxiv.org/abs/cs/0606040.

�� Supported by the Postdoc-Program of the German Academic Exchange Service
(DAAD). On leave from Saarland University. Work done in part at the University
of Lübeck supported by DFG research grant RE 672/3 and at Saarland University.

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 302–315, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation Algorithms for Multi-criteria Traveling Salesman Problems 303

Consider for instance buying a car: We (probably) want to buy a cheap car that
is fast and has a good gas mileage. How do we decide which car is the best one for
us? Of course, with respect to any single criterion, making the decision is easy.
But with multiple criteria involved, there is no natural notion of a best choice.
The aim of multi-criteria optimization (also called multi-objective optimization
or Pareto optimization) is to cope with this problem. To transfer the concept
of a best choice to multi-criteria optimization, the notion of Pareto curves was
introduced (cf. Section 1.1 and Ehrgott [12]). A Pareto curve is a set of solutions
that can be considered optimal.

However, for most optimization problems, Pareto curves cannot be computed
efficiently. Thus, we have to be content with approximations to them.

The traveling salesman problem (TSP) is one of the best-known combinatorial
optimization problems [16]. An instance of the TSP is a complete graph with
edge weights, and the aim is to find a Hamiltonian cycle (also called a tour) of
minimum weight. Since the TSP is NP-hard [14], we cannot hope to always find
an optimal tour efficiently. For practical purposes, however, it is often sufficient
to obtain a tour that is close to optimal. In such cases, we require approximation
algorithms, i. e., polynomial-time algorithms that compute such near-optimal
tours.

While the approximability of several variants of the single-criterion TSP has
been studied extensively in the past decades, not much is known about the
approximability of multi-criteria TSP. The classical TSP is about a traveling
salesman who has to visit a certain number of cities and return back home in
a shortest tour. “Real” saleswomen and salesmen do not face such a simple
situation. Instead, while arranging their tours, they have to bear in mind several
objectives that are to be optimized. For instance, the distance travelled and
the travel time should be minimized while the journey should be as cheap as
possible. This gives rise to multi-criteria TSP, for which we design approximation
algorithms in this paper.

1.1 Preliminaries

Graphs and Optimization Problems. Let G = (V,E) be a graph (directed or
undirected) with edge weights w : E → N. We define the weight of a subgraph
G′ = (V ′, E′) of G or a subset E′ of the edges of G as the sum of the weights of
its edges: w(G′) = w(E′) =

∑
e∈E′ w(e). For k ∈ N, we define [k] = {1, 2, . . . , k}.

TSP in general is the following optimization problem: Given a graph with
edge weights, find a Hamiltonian cycle, i. e., a cycle that visits every vertex of
the graph exactly once, of minimum weight. In this paper, we are concerned
with several variants of the TSP, which are defined below. In case of undirected
graphs, we speak of the symmetric TSP (STSP), while in case of directed graphs,
we refer to the problem as the asymmetric TSP (ATSP).

Definition 1 (TSP). An instance of Δ -STSP is an undirected complete graph
G = (V,E) with edge weights w : E → N that fulfill triangle inequality, i. e.,
w({u, v}) ≤ w({u, x}) + w({x, v}) for all distinct vertices u, v, x ∈ V .

304 B. Manthey and L.S. Ram

For γ ∈ [12 , 1], Δ(γ) -STSP is the restriction of Δ -STSP to instances that
satisfy γ-strengthened triangle inequality, i. e., w({u, v}) ≤ γ · (w({u, x}) +
w({x, v})) for all distinct vertices u, v, x.

STSP(1, 2) is the special case of Δ -STSP where only one and two are allowed
as edge weights, i. e., w : E → {1, 2}.

Δ -ATSP, Δ(γ) -ATSP, and ATSP(1, 2) are analogously defined except
that the graphs are directed.

In all variants, Hamiltonian cycles of minimum weight are sought.

For γ = 1, Δ(γ) -STSP becomes Δ -STSP and Δ(γ) -ATSP becomes Δ -ATSP.
As γ gets smaller, the edge weights become more and more structured. For
γ = 1/2, all edge weights are equal. The γ-strengthened triangle inequality can
also be considered as a data-dependent bound [7]: Given an instance of metric
TSP, we compute the minimum γ such that the instance fulfills γ-strengthened
triangle inequality. If γ < 1, then we obtain a better performance guarantee for
our approximate solution than with triangle inequality alone.

Throughout the paper, a matching always means a perfect matching, i. e.,
a set of edges such that every vertex is incident to exactly one edge. Match
denotes the problem of computing a matching of minimum weight. We refer to
a matching as the set M of its edges.

The minimum spanning tree problem, denoted by MST, is the problem of
computing a spanning tree of minimum weight. We refer to a tree as the set T
of its edges.

A cycle cover of a graph G = (V,E) is a subgraph (V,C) that consists solely
of cycles such that every vertex v ∈ V is part of exactly one cycle. In most
cases, we refer to a cycle cover as the set C of its edges. Hamiltonian cycles are
cycle covers that consist of only a single cycle. Below we define two optimization
problems concerning cycle covers.

Definition 2 (cycle cover problems). The problem of computing cycle covers
of minimum weight in undirected graphs is called SCC. The directed version of
the problem is called ACC.

Multi-criteria Optimization. Let us first formally define what a k-criteria opti-
mization problem is. We assume in the following that the number k of criteria
is fixed. The running-times of our algorithms are usually exponential in k. But
since k is typically a small number, this does not cause any harm.

Definition 3 (k-criteria optimization problem). A k-criteria optimization
problem Π consists of a set I of instances, a set sol(x) of feasible solutions for
every instance x ∈ I, k objective functions w1, . . . , wk, each mapping pairs of
x ∈ I and y ∈ sol(x) to N, and k types indicating whether wi should be minimized
or maximized.

We refer to Ehrgott and Gandibleux [12,13] for surveys on multi-criteria op-
timization problems. Throughout this paper, we restrict ourselves to problems
where all objective functions should be minimized. The optimization problems

Approximation Algorithms for Multi-criteria Traveling Salesman Problems 305

defined in Section 1.1 are generalized to their multi-criteria counterparts in the
obvious way: We have k objective functions w1, . . . , wk, each induced by edge
weight functions (to which we also refer as w1, . . . , wk) as described. If we have
additional restrictions on the edge weights, like triangle inequality, every edge
weight function is assumed to fulfill them. In general, the different objective func-
tions are in conflict with each other, i. e., it is impossible to minimize all of them
simultaneously. Therefore, the notion of Pareto curves has been introduced.

For the following definitions, let Π be a k-criteria optimization problem as
defined above.

Definition 4 (Pareto curve). A set P(x) ⊆ sol(x) is called a Pareto curve of
x if for all solutions z ∈ sol(x), there exists a solution y ∈ P(x) with wi(x, y) ≤
wi(x, z) for all i ∈ [k].

A Pareto curve contains all solutions that might be considered optimal. For
completeness, let us mention that Pareto curves are not unique in general: In
our definition, it is not forbidden to include dominated solutions in P(x) (a
solution y is dominated if there exists a z with wi(x, z) ≤ wi(x, y) for all i ∈ [k]
and wi(x, z) < wi(x, y) for some i ∈ [k], i. e., z is strictly better than y). However,
if we restrict ourselves to explicitly given sets of solutions, we can easily get rid
of such dominated solutions.

For the majority of multi-criteria problems, computing Pareto curves is hard
for two reasons: First, many two-criteria problems allow for a reduction from the
knapsack problem. Second, Pareto curves are often of exponential size. Therefore,
it is natural to consider the idea of an approximation to Pareto curves.

Definition 5 (β-approximate Pareto curve). Let β ≥ 1. Let x ∈ I and
Papx(x) ⊆ sol(x). The set Papx(x) is called a β-approximate Pareto curve for x
if, for every z ∈ sol(x), there exists a y ∈ Papx(x) with wi(x, y) ≤ β ·wi(x, z) for
all i ∈ [k].

While Pareto curves itself are often of exponential size, it is known that (1 + ε)-
approximate Pareto curves of size polynomial in the input size and 1/ε exist if
the number k of criteria is fixed [19]. (The size of the approximate Pareto curve
is in general exponential in k. The technical restriction is that the objective
functions are restricted to assume values of at most 2p(|x|) for x ∈ I and some
polynomial p. This is fulfilled for almost all natural optimization problems.).

The above definition leads immediately to the notion of an approximation
algorithm for multi-criteria optimization problems.

Definition 6 (approximation algorithm). Let β ≥ 1. A β-approximation
algorithm for Π is an algorithm that, for every input x ∈ I, computes a β-
approximate Pareto curve for x in time polynomial in the size |x| of x.

A randomized β-approximation algorithm for Π is a polynomial-time algo-
rithm that, for every input x ∈ I, computes a set Papx(x) ⊆ sol(x) such that
Papx(x) is a β-approximate Pareto curve for x with a probability of at least 1/2.

By executing a randomized approximation algorithm � times, we obtain a β-
approximate Pareto curve with a probability of at least 1− 2−�, i. e., the failure

306 B. Manthey and L.S. Ram

probability tends exponentially to zero: We take the union of all sets of solutions
computed in the � iterations and throw away all solutions that are dominated
by solutions in the union.

Definition 7 (FPTAS, FPRAS). An algorithm is a fully polynomial-time
approximation scheme (FPTAS) for Π if, on input x ∈ I and ε > 0, it computes
a (1 + ε)-approximate Pareto curve in time polynomial in the size of x and 1/ε.

A fully polynomial-time randomized approximation scheme (FPRAS) for Π is
a randomized approximation algorithm that, on input x ∈ I and ε > 0, computes
a (1 + ε)-approximate Pareto curve in time polynomial in the size of x and 1/ε.

Definition 8 (randomized exact algorithm). A randomized exact algorithm
for Π is an algorithm that, on input x, computes a Pareto curve of x in time
polynomial in the size of x with a probability of at least 1/2.

An optimization problem Π is said to be polynomially bounded if there exists a
polynomial p such that the following holds for every objective function wi of Π :
For every instance x and every feasible solution y for x, wi(x, y) ≤ p(|x|) for all
i ∈ [k]. An exact algorithm can be obtained from an FPTAS for a polynomially
bounded optimization problem.

Lemma 1. Suppose that Π is polynomially bounded. If there exists an FPTAS
for Π, then Π can be solved exactly in polynomial time. If there exists an FPRAS
for Π, then there exists a randomized exact algorithm for Π.

1.2 Previous Results

The approximability of single-criterion TSP has been studied intensively in the
past. The currently best approximation ratios for the variants of single-criterion
TSP considered in this paper are 3/2 for Δ -STSP [10], 8/7 for STSP(1, 2) [5],
min
{

3γ2

3γ2−2γ+1 ,
2−γ
3−3γ

}
for Δ(γ) -STSP [8], 0.842 · logn for Δ -ATSP [15], 5/4 for

ATSP(1, 2) [6], and min
{

1+γ
2−γ−γ3 ,

γ
1−γ

}
for Δ(γ) -ATSP [7,9].

While single-criterion optimization problems and their approximation prop-
erties have been the subject of a considerable amount of research (cf. Ausiello
et al. [3] for a survey), not much is known about the approximability of multi-
criteria optimization problems.

Papadimitriou and Yannakakis [19], by applying results of Barahona and Pul-
leyblank [4], Mulmuley et al. [17], and themselves [18], showed that there exist
FPTASs for multi-criteria MST and the multi-criteria shortest path problem and
an FPRAS for multi-criteria Match. (More precisely, a fully polynomial RNC
scheme.) The results were established by showing that a multi-criteria problem
admits an FPTAS if the exact version of the single-criterion problem can be
solved in pseudo-polynomial time. The exact version of a single-criterion opti-
mization problem Π is the following decision problem: Given an instance x ∈ I
and a number W ∈ N, does there exist a solution y ∈ sol(x) with w(x, y) = W?
The exact versions of many single-criterion optimization problems are NP-hard

Approximation Algorithms for Multi-criteria Traveling Salesman Problems 307

since knapsack can be reduced to them easily. But this does not rule out the
possibility of pseudo-polynomial-time algorithms for them.

Multi-criteria TSP has been investigated by Ehrgott [11] and Angel et al. [1,2].
Ehrgott [11] analyzed a generalization of Christofides’ algorithm for Δ -STSP.
Instead of considering Pareto curves, he measured the quality of a solution y for
an instance x as a norm of the vector (w1(x, y), . . . , wk(x, y)). Thus, he encoded
the different objective functions into a single one, which reduces the problem to
a single-criterion problem. The approximation ratio achieved is between 3/2 and
2, depending on the norm used to combine the different criteria. However, by
encoding all objective functions into a single one, we lose the special properties
of multi-criteria optimization problems.

Angel et al. [1] considered two-criteria STSP(1, 2). They presented a 3/2-
approximation algorithm for this problem by using a local search heuristic. Fi-
nally, Angel et al. [2] generalized these results to k-criteria STSP(1, 2) by pre-
senting a 2 − 2

k+1 -approximation for k ≥ 3. Although for every fixed k, the
approximation ratio is below 2, it converges to 2 as k increases. Thus, the ratio
tends to the trivial ratio of 2, which can be achieved by selecting any Hamilto-
nian cycle. These two are the only papers about the approximability of Pareto
curves of multi-criteria TSP we are aware of.

1.3 Our Results

All our results hold for an arbitrary but fixed number of objective functions.
We present a deterministic polynomial-time algorithm that computes (2+ ε)-

approximate Pareto curves for Δ -STSP (Section 2.1). This is the first efficient
algorithm for computing approximate Pareto curves for this problem. In fact, we
show the following more general result: If the edge weights satisfy γ-strengthened
triangle inequality for γ ∈ [12 , 1], then the algorithm computes a (1 + γ + ε)-
approximate Pareto curve for arbitrarily small ε > 0 in polynomial time.

We generalize Christofides’ algorithm [10] (cf. Vazirani [22]) to obtain a ran-
domized approximation algorithm for multi-criteria Δ(γ) -STSP (Section 2.2).
For γ ∈ [12 , 1], our algorithm achieves an approximation ratio of 2γ3+γ2+2γ−1

2γ2 +ε.
For γ = 1, this yields a ratio of 2 + ε.

We consider cycle covers in Section 3. Cycle covers play an important role
in the design of approximation algorithms for the TSP. We prove that there
exists an FPRAS for computing approximate Pareto curves of multi-criteria
cycle covers. Subsequently, we extend this result and show that the multi-criteria
variant of the problem of finding graph factors of minimum weight admits an
FPRAS, too.

Finally, we analyze a randomized cycle-cover-based algorithm for multi-cri-
teria TSP (Section 4): We start by computing an approximate Pareto curve of
cycle covers. Then, for every cycle cover in the set computed, we remove one
edge of every cycle and join the paths thus obtained to a Hamiltonian cycle. We
analyze the approximation ratio of this algorithm for Δ(γ) -STSP (Section 4.1,
approximation ratio 1+γ

1+3γ−4γ2 + ε for γ < 1), Δ(γ) -ATSP (Section 4.2, ratio

308 B. Manthey and L.S. Ram

Algorithm 1. The tree doubling algorithm for multi-criteria Δ -STSP
Input: undirected complete graph G = (V, E); edge weights wi : E → N (i ∈ [k]);

ε > 0
Output: an approximate Pareto curve Papx

TSP to the multi-criteria STSP
1: compute a (1 + ε

2
)-approximate Pareto curve Papx

MST for MST on G
2: for all trees T ∈ Papx

MST do
3: duplicate all edges in T to obtain an Eulerian graph T̃
4: obtain a Hamiltonian cycle S from T̃ by taking shortcuts; put S into Papx

TSP

5: end for

1
2 + γ3

1−3γ2 + ε for γ < 1/
√

3), STSP(1, 2), and ATSP(1, 2) (Section 4.3, ratios
4/3 and 3/2, respectively).

As far as we know, our algorithms are the first approximation algorithms for
Pareto curves for Δ -STSP, Δ(γ) -STSP, Δ(γ) -ATSP, and ATSP(1, 2). Further-
more, we achieve a better approximation ratio for STSP(1, 2) than the algorithms
by Angel et al. [1,2] for all k.

2 Metric TSP

In this section, we present two algorithms for Δ -STSP and Δ(γ) -STSP. Another
approximation algorithm that can be used for approximating Δ(γ) -STSP, which
is based on computing cycle covers, will be presented in Section 4.

2.1 The Generalized Tree Doubling Algorithm

Consider the following approximation algorithm for single-criterion Δ -STSP,
which was first analyzed by Rosenkrantz et al. [20] (cf. Vazirani [22]): First, we
compute a minimum spanning tree. Then we duplicate each edge. The result is an
Eulerian graph. We obtain a Hamiltonian cycle from this graph by walking along
an Eulerian cycle. If we come back to a vertex that we have already visited, we
omit it and take a short-cut to the next vertex in the Eulerian cycle. In this way,
we obtain an approximation ratio of 2 for single-criterion Δ -STSP. Algorithm 1
is an adaptation of this algorithm to multi-criteria STSP.

Theorem 1. For all γ ∈ [12 , 1], Algorithm 1 computes a (1+γ +ε)-approximate
Pareto curve for multi-criteria Δ(γ) -STSP in time polynomial in the input size
and 1/ε.

Corollary 1. Algorithm 1 is a (2+ε)-approximation algorithm for multi-criteria
Δ -STSP. Its running-time is polynomial in the input size and 1/ε.

2.2 A Generalization of Christofides’ Algorithm

In this section, we generalize Christofides’ algorithm to multi-criteria Δ -STSP,
which is the best approximation algorithm for single-criterion Δ -STSP known

Approximation Algorithms for Multi-criteria Traveling Salesman Problems 309

Algorithm 2. A generalization of Christofides’ algorithm for multi-criteria
Δ -STSP
Input: undirected complete graph G = (V, E); edge weights wi : E → N (i ∈ [k]);

ε > 0
Output: an approximate Pareto curve Papx

TSP to the multi-criteria STSP (with a prob-
ability of at least 1/2)

1: compute a (1 + ε
2
)-approximate Pareto curve Papx

MST for MST on G
2: let p be the number of trees in Papx

MST

3: for all trees T ∈ Papx
MST do

4: let Vodd ⊆ V be the set of vertices of odd degree in T
5: compute Papx

Match(T) such that Papx
Match(T) is a 1+ ε

2
-approximate Pareto curve

for Match on the graph induced by Vodd with a probability of at least 1− 1
2p

6: for all matchings M ∈ Papx
Match(T) do

7: obtain a Hamiltonian cycle S from T ∪ M by taking shortcuts; put S into
Papx

TSP

8: end for
9: end for

so far. This algorithm computes Pareto curves of matchings. In case of single-
criterion Δ -STSP, we can always find a matching with a weight of at most half
of the weight of the optimal Hamiltonian cycle. This is in contrast to multi-
criteria Δ -STSP, where the weights of the matchings can be arbitrarily close
to the weight of the optimal Hamiltonian cycle. The reason is that we cannot
choose the lighter of two different matchings since multiple objective functions
are involved; the term ”‘lighter”’ is not well defined. Therefore, we only get an
approximation ratio of roughly two in this case. But for Δ(γ) -STSP, we can
show a better upper bound. The analysis of the algorithm exploits the following
result due to Böckenhauer et al. [8].

Lemma 2 (Böckenhauer et al. [8]). Let G = (V,E) be an undirected com-
plete graph with an edge weight function w satisfying γ-strengthened triangle
inequality for some γ ∈ [12 , 1).

Let wmax = maxe∈E(w(e)) and wmin = mine∈E(w(e)) be the weights of a
heaviest and lightest edge, respectively. Then wmax

wmin
≤ 2γ2

1−γ .

Let e and e′ be two edges with a common endpoint. Then w(e)
w(e′) ≤

γ
1−γ .

Theorem 2. For γ ∈ [12 , 1], Algorithm 2 is a randomized
(

2γ3+γ2+2γ−1
2γ2 + ε

)
-

approximation algorithm for multi-criteria Δ(γ) -STSP. Its running time is poly-
nomial in the input size and 1/ε.

We compare the ratios obtained by the two algorithms of this sections and the
cycle cover algorithm of Section 4 in Section 5.1.

310 B. Manthey and L.S. Ram

3 Matchings and Cycle Covers

A cycle cover of a graph is a spanning subgraph that consists solely of cycles such
that every vertex is part of exactly one cycle. Many approximation algorithms
for the single-criterion TSP are based on cycle covers. These approximation algo-
rithms usually start by computing an initial cycle cover and then join the cycles
to obtain a Hamiltonian cycle. This technique is called subtour patching [16].

3.1 Multi-criteria ACC

ACC, the cycle cover problem in directed graphs, is equivalent to finding match-
ings of minimum weight in bipartite graphs (assignment problem). An FPRAS
for multi-criteria Match is also an FPRAS for the multi-criteria matching prob-
lem in bipartite graphs. Hence, multi-criteria ACC also admits an FPRAS.

Theorem 3. There exists an FPRAS for the multi-criteria ACC.

3.2 Multi-criteria SCC and f-Factors

To show that multi-criteria SCC admits an FPRAS, we reduce SCC using Tutte’s
reduction [21] to the matching problem in general graphs. Cycle covers in undi-
rected graphs are also known as two-factors since in a cycle cover, every vertex
is incident to exactly two edges. We obtain the following result from the fact
that the matching problem admits an FPRAS [19].

Theorem 4. Multi-criteria SCC admits an FPRAS.

We can generalize the FPRAS for the undirected cycle cover problem to arbitrary
f -factors by exploiting Tutte’s reduction again. The proof goes along the same
lines as the proof of Theorem 4. Let G = (V,E) be an undirected graph and
f : V → N be any function. A subset F ⊆ E is called an f -factor of G if all
v ∈ V are incident to exactly f(v) edges in F . If f(v) = 2 for all v ∈ V , an
f -factor is a cycle cover.

Definition 9 (GFP). The graph factor problem GFP is the following mini-
mization problem: An instance is an undirected graph G = (V,E) with a func-
tion f : V → N and an edge weight function w : E → N. The aim is to find an
f -factor of minimum weight.

Theorem 5. Multi-criteria GFP admits an FPRAS.

4 Approximations Based on Cycle Covers

The generic outline of a cycle-cover-based algorithm is the following: Start by
computing a cycle cover. Then remove one edge of every cycle. Finally, join the
paths thus obtained to form a Hamiltonian cycle. Algorithm 3 is our generaliza-
tion of this algorithm to multi-criteria TSP. It achieves a constant approxima-
tion ratio if the quotient of the weight of the heaviest edge and the weight of the

Approximation Algorithms for Multi-criteria Traveling Salesman Problems 311

Algorithm 3. An approximation algorithm based on cycle covers for multi-
criteria TSP
Input: complete graph G = (V, E); edge weights wi (i ∈ [k]); ε′ > 0
Output: approximate Pareto curve Papx

TSP to multi-criteria TSP (with a probability of
at least 1/2)

1: compute a (1 + ε′)-approximate Pareto curve PCC to the multi-criteria cycle cover
problem

2: for all cycle covers C ∈ PCC do
3: for all cycles c of C do
4: remove one edge of c
5: end for
6: join the paths to form a Hamiltonian cycle S and add S to Papx

TSP

7: end for

eK

eR

e′A

e′R

e′K

eA c′c

(a) Cycle cover, before the patching.

eK

eR

e′A

e′R

e′K

eA c′c

(b) Hamiltonian cycle, after the patching.

Fig. 1. Two cycles c and c′ before and after joining the cycles to a Hamiltonian cycle.
The edges eR, eK , and eA belong to c while e′

R, e′
K , and e′

A belong to c′.

lightest edge is bounded. In this section, we present a general analysis of the ap-
proximation ratio of this algorithm. We will refine the analysis for multi-criteria
Δ(γ) -STSP (Section 4.1) to get an improved approximation ratio. Furthermore,
we apply the analysis to get approximation results for multi-criteria Δ(γ) -ATSP
(Section 4.2) and STSP(1, 2) and ATSP(1, 2) (Section 4.3). We analyze Algo-
rithm 3 in terms of the number αn of edges that have to be removed and the
quotient β = wmax/wmin.

Lemma 3. Assume that at most αn edges have to be removed from each cycle
cover and that maxe∈E wi(e)

mine∈E wi(e)
≤ β for all i ∈ [k]. Then Algorithm 3 is a randomized

(1+α(β− 1)+ ε) approximation for every ε > 0. Its running-time is polynomial
in the input size and 1/ε.

4.1 Refined Analysis for Δ(γ)-STSP

From the general analysis, we obtain an approximation ratio of 2
3 + 1

3 ·
2γ2

1−γ + ε

for Δ(γ) -STSP. In this section, we present a refined analysis that yields a better
approximation ratio.

312 B. Manthey and L.S. Ram

Consider any cycle c of a cycle cover of PCC. There will be an edge eR of c
that will be removed and an edge eA adjacent to eR that will be added during
the joining process. Finally, there exists an edge eK of c that is adjacent to both
eR and eA (Figure 1 shows an example). Note that while eR is unique, once the
edges have been removed and added, the edge eA is not since there are two edges
that connect c to other cycles. However, once we have fixed eA for one cycle c,
the corresponding eK is uniquely determined, and the e′A and e′K of all other
cycles c′ are also determined. By Lemma 2, we have wi(eR) ≥ 1−γ

γ · wi(eA) and
wi(eK) ≥ 1−γ

γ · wi(eA). Exploiting these inequalities, we obtain the following
result.

Theorem 6. Algorithm 3 is a randomized
(

1+γ
1+3γ−4γ2 + ε

)
-approximation algo-

rithm for all ε > 0. Its running-time is polynomial in the input size and 1/ε.

In Section 5.1, we compare the approximation ratios of the cycle cover algorithm
for Δ(γ) -STSP to the tree doubling and Christofides’ algorithm.

4.2 The Cycle Cover Algorithm for Δ(γ)-ATSP

For multi-criteria Δ(γ) -ATSP, our algorithm yields a constant factor approxi-
mation if γ < 1/

√
3 since wmax/wmin is bounded from above by 2γ3

1−3γ2 for such
γ. For larger values of γ, this ratio can be unbounded.

Lemma 4 (Chandran and Ram [9]). Let γ ∈ [1/2, 1). Let G = (V,E) be a
directed complete graph, and let w : E → N be an edge weight function satisfying
γ-triangle inequality. Let wmin = mine∈E w(e) and wmax = maxe∈E w(e).

If γ < 1/
√

3, then wmax
wmin

≤ 2γ3

1−3γ2 . If γ ≥ 1/
√

3, then wmax
wmin

can be unbounded.

By combining Lemmas 3 and 4, we obtain the following result.

Theorem 7. For γ < 1/
√

3, Algorithm 3 is a randomized
(

1
2 + γ3

1−3γ2 + ε
)
-

approximation algorithm for Δ(γ) -ATSP.

We leave as an open problem to generalize the analysis to larger values of γ.
However, it seems to be hard to find a constant factor approximation for γ = 1
since this would immediately yield a constant factor approximation for single-
criterion Δ -ATSP

4.3 TSP with Weights One and Two

For both STSP(1, 2) and ATSP(1, 2), we have β = 2, i. e., wmax/wmin = 2. For
STSP(1, 2), we have α ≤ 1/3, while we only have α ≤ 1/2 in case of ATSP(1, 2).
The approximation ratio follows by exploiting Lemma 3. The edge weights
and thus the objective functions are polynomially bounded for STSP(1, 2) and
ATSP(1, 2). Thus, by Lemma 1, we can compute Pareto curves of cycle covers
instead of only (1 + ε)-approximate Pareto curves. Hence, we can get rid of the
additional ε in the approximation ratios.

Approximation Algorithms for Multi-criteria Traveling Salesman Problems 313

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.5 0.6 0.7 0.8 0.9 1

tree doubling
Christofides

cycle cover (general analysis)
cycle cover (refined analysis)

Fig. 2. Approximation ratios subject to γ achieved by tree doubling (Algorithm 1),
Christofides’ algorithm (Algorithm 2), and the cycle cover algorithm (Algorithm 3,
Section 4), for which both the ratio obtained from the general and the refined analysis
(Section 4.1) are shown

Theorem 8. Algorithm 3 is a randomized 4/3 approximation algorithm for
multi-criteria STSP(1, 2).

Theorem 9. Algorithm 3 is a randomized 3/2 approximation algorithm for
multi-criteria ATSP(1, 2).

5 Concluding Remarks

5.1 Comparing the Approximation Ratios for Δ(γ)-STSP

Let us compare the approximation ratios achieved by the tree doubling algo-
rithm (Section 2.1), Christofides’ algorithm (Section 2.2), and the cycle cover
algorithm (Section 4). Figure 2 shows the approximation ratios achieved by
these algorithms subject to γ. Figure 3 shows the approximation ratios achieved
deterministically (by the tree doubling algorithm) and randomized (by a combi-
nation of Christofides’ and the cycle cover algorithm). The ratios are compared
to the trivial ratio of wmax/wmin and to the currently best known approximation
ratio for single-criterion Δ(γ) -STSP. Note that in particular for small values of
γ, our algorithms for multi-criteria Δ(γ) -STSP come close to achieving the ratio
of the best algorithms for single-criterion Δ(γ) -STSP.

5.2 Open Problems

Our approximation algorithm for multi-criteria Δ(γ) -ATSP works only for γ <
1/
√

3. Thus, we are interested in finding constant factor approximation al-
gorithms also for γ ≥ 1/

√
3, which exist for all γ < 1 for single-criterion

Δ(γ) -ATSP [7,9].

314 B. Manthey and L.S. Ram

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.5 0.6 0.7 0.8 0.9 1

deterministic
randomized

single-criterion
trivial ratio

Fig. 3. Approximation ratios subject to γ. The deterministic ratio is achieved by tree
doubling. Combining Christofides’ and the cycle cover algorithm yields the randomized
ratio. For comparison, the ratio for single-criterion Δ(γ) -STSP and the trivial ratio
wmax
wmin

are also shown.

The cycle-cover-based algorithm for Max-TSP, where Hamiltonian cycles of
maximum weight are sought, does not seem to perform well for multi-criteria
Max-TSP. The reason for this is that the approximation algorithms for Max-TSP
that base on cycle covers usually contain a statement like “remove the lightest
edge of every cycle”. While this works for single-criterion TSP, the term “lightest
edge” is not well-defined for multi-criteria traveling salesman problems. We are
particularly curious about the approximability of multi-criteria Max-TSP.

References

1. Eric Angel, Evripidis Bampis, and Laurent Gourvés. Approximating the Pareto
curve with local search for the bicriteria TSP(1,2) problem. Theoretical Computer
Science, 310(1–3):135–146, 2004.

2. Eric Angel, Evripidis Bampis, Laurent Gourvès, and Jéro̧me Monnot. (Non-)ap-
proximability for the multi-criteria TSP(1,2). In Maciej Lískiewicz and Rüdiger
Reischuk, editors, Proc. of the 15th Int. Symp. on Fundamentals of Computation
Theory (FCT), volume 3623 of Lecture Notes in Computer Science, pages 329–340.
Springer, 2005.

3. Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and Approximation: Com-
binatorial Optimization Problems and Their Approximability Properties. Springer,
1999.

4. Francisco Barahona and William R. Pulleyblank. Exact arborescences, matchings
and cycles. Discrete Applied Mathematics, 16(2):91–99, 1987.

5. Piotr Berman and Marek Karpinski. 8/7-approximation algorithm for (1, 2)-TSP.
In Proc. of the 17th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 641–648. SIAM, 2006.

Approximation Algorithms for Multi-criteria Traveling Salesman Problems 315

6. Markus Bläser. A 3/4-approximation algorithm for maximum ATSP with weights
zero and one. In Klaus Jansen, Sanjeev Khanna, José D. P. Rolim, and Dana
Ron, editors, Proc. of the 7th Int. Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), volume 3122 of Lecture Notes
in Computer Science, pages 61–71. Springer, 2004.

7. Markus Bläser, Bodo Manthey, and Jǐŕı Sgall. An improved approximation algo-
rithm for the asymmetric TSP with strengthened triangle inequality. Journal of
Discrete Algorithms, to appear.

8. Hans-Joachim Böckenhauer, Juraj Hromkovič, Ralf Klasing, Sebastian Seibert, and
Walter Unger. Approximation algorithms for the TSP with sharpened triangle
inequality. Information Processing Letters, 75(3):133–138, 2000.

9. L. Sunil Chandran and L. Shankar Ram. Approximations for ATSP with param-
eterized triangle inequality. In Helmut Alt and Afonso Ferreira, editors, Proc. of
the 19th Int. Symp. on Theoretical Aspects of Computer Science (STACS), volume
2285 of Lecture Notes in Computer Science, pages 227–237. Springer, 2002.

10. Nicos Christofides. Worst-case analysis of a new heuristic for the traveling salesman
problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 1976.

11. Matthias Ehrgott. Approximation algorithms for combinatorial multicriteria opti-
mization problems. International Transactions in Operational Research, 7(1):5–31,
2000.

12. Matthias Ehrgott. Multicriteria Optimization. Springer, 2005.
13. Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography

of multiobjective combinatorial optimization. OR Spectrum, 22(4):425–460, 2000.
14. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
15. Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approxima-

tion algorithms for asymmetric TSP by decomposing directed regular multigraphs.
Journal of the ACM, 52(4):602–626, 2005.

16. Eugene L. Lawler, Jan Karel Lenstra, Alexander H. G. Rinnooy Kan, and David B.
Shmoys, editors. The Traveling Salesman Problem: A Guided Tour of Combinato-
rial Optimization. John Wiley & Sons, 1985.

17. Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy
as matrix inversion. Combinatorica, 7(1):105–113, 1987.

18. Christos H. Papadimitriou. The complexity of restricted spanning tree problems.
Journal of the ACM, 29(2):285–309, 1982.

19. Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of
trade-offs and optimal access of web sources. In Proc. of the 41st Ann. IEEE
Symp. on Foundations of Computer Science (FOCS), pages 86–92. IEEE Computer
Society, 2000.

20. Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis II. An analysis of
several heuristics for the traveling salesman problem. SIAM Journal on Computing,
6(3):563–581, 1977.

21. William T. Tutte. A short proof of the factor theorem for finite graphs. Canadian
Journal of Mathematics, 6:347–352, 1954.

22. Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

The Survival of the Weakest in Networks�

S. Nikoletseas1,2, C. Raptopoulos1,2, and P. Spirakis1,2

1 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
nikole@cti.gr, raptopox@ceid.upatras.gr, spirakis@cti.gr

2 University of Patras, 26500 Patras, Greece

Abstract. We study here dynamic antagonism in a fixed network, rep-
resented as a graph G of n vertices. In particular, we consider the case
of k ≤ n particles walking randomly independently around the network.
Each particle belongs to exactly one of two antagonistic species, none
of which can give birth to children. When two particles meet, they are
engaged in a (sometimes mortal) local fight. The outcome of the fight
depends on the species to which the particles belong. Our problem is
to predict (i.e. to compute) the eventual chances of species survival. We
prove here that this can indeed be done in expected polynomial time on
the size of the network, provided that the network is undirected.

1 Introduction and Our Results

In biological systems, successful genes and traits are the ones for which there is
a good chance of a continuously fitness-increasing path leading from the current
phenotype and genotype to the target ones. Similarly, in the context of the
Internet, computational artifacts (like viruses and anti-virus programs, routing
schemes etc) usually antagonize locally and the eventual prevalence of an artifact
depends on this antagonism.

Evolutionary game theory has established ways of analysing multi-species
competition. See e.g. Weibull [10] and the excellent work of Maynard Smith
[4] for the interplay between biology and game theory. In all studies like [10],
the “animals” of the competing species are randomly paired (as if they are in
a “bag”) and, depending on the local game played, some game participants
may die or give birth, thus changing the population mixture. However, when
individual members of each species “move” into a finite network (e.g. among
neighbour nodes of a graph) then the basic “random mating” assumption of
classical evolutionary game theory collapses. Only those individuals that happen
to meet currently are involved in local fights.

� This work was partially supported by the IST Programme of the European Union
under contact number IST-2005-15964 (AEOLUS) and by the Programme PENED
under contact number 03ED568, co-funded 75% by European Union – European
Social Fund (ESF), 25% by Greek Government – Ministry of Development – Gen-
eral Secretariat of Research and Technology (GSRT), and by Private Sector, under
Measure 8.3 of O.P. Competitiveness – 3rd Community Support Framework (CSF).

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 316–329, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Survival of the Weakest in Networks 317

Given this new situation (which abstracts reality in networks) can we predict
efficiently the “eventual” population mixture, e.g. the chance of survival of one
(the weakest) of the species? Moreover, is our prediction method better than a
simulation of the evolution of the population mixture?

We embark here in the study of this question. We first define the simplest, yet
nontrivial, model of two-species antagonism: Our population members (called
particles also) are either very malicious “hawks” or peaceful “doves”. Hawks kill
doves when they meet. Also, when two hawks meet they kill each other. Each
particle performs an independent random walk in the graph. Doves do not harm
each other when they meet.

We then concentrate on the simplest possible question: Can we calculate effi-
ciently the chance of eventual survival of the weakest species? We assume that
the graph (of motions) and the initial particles positions are given.

As a worst case scenario, we examine the weakest possible case of the weak
species (just one dove). Note that the chance of eventual survival of a single
dove is a lower bound for the case of many doves, since doves do not reproduce.
We first prove the following result: When G is directed, then the probability of
eventual survival of the dove can be exponentially small. We believe that in this
case the problem is hard, thus, we do not expect to be able to efficiently predict
the final outcome.

It turns out however that, when G is undirected, then:

1. we can decide in polynomial time (in the number n of the graph’s vertices)
when the probability of eventual survival of the dove is non-zero.

2. We prove that the probability of the dove’s survival (when non-zero) is lower
bounded by the inverse of a polynomial in n.

3. We can approximate the exact value of the probability of dove survival to
any degree of accuracy in expected polynomial time (on n and the accuracy
of the approximation). This result is a consequence of our main result in
this paper, namely that the probability of dove’s survival (when non-zero)
is bounded below by the inverse of a polynomial on n.

We see our work as one first step of a new field, namely that of computational
complexity of discrete evolutionary dynamics.

1.1 Previous Work and Comparison

An introduction to evolutionary game theory, stable strategies and replicator
dynamics appears in [10]. A more stochastic approach is given in [8]. In both
texts, the replicators dynamics used assume a population that contains individu-
als who play some incumbent strategy of some game Γ and at every step random
matches between them take place. These kinds of dynamics either converge or not
to an evolutionary stable strategy. A stochastic version of the classical replicator
dynamics is considered by Imhof in [2]. In particular, he studies the long-run be-
haviour of the model when noise is added. Also, the authors in [3] study the case
of stochastic replicators dynamics in 2 × 2 symmetric games. They add an ele-
ment of randomness by making at each step every player to change his strategy

318 S. Nikoletseas, C. Raptopoulos, and P. Spirakis

with some probability ε, independently from the replicator principle. They show
that this works quite well, as it favors paretto efficient Nash equilibria. None of
these works considers interacting species when population members move inside
a network. Our work is the first work that examines species antagonism discrete
dynamics of a stochastic nature, over a finite graph.

In our model we consider a hawks-and-doves game and assume that the in-
dividuals perform random walks on the vertices of some graph. Only players
who meet on a vertex play the game. Their payoffs are interpreted as birth
or death rates. The evolution dynamics in our model can be described with
Markov Chains. A nice introduction to Markov Chains is [6] and also [7] where
other stochastic processes are described as well. An upper bound on the number
of steps needed for all the players to meet can be derived by the result in [9]
where the number of individuals is 2. A more general result for the case of k
individuals is given in [1]. However, [9] and [1] do not consider the phenomenon
of species antagonism, since they consider only one species. In fact, they do not
offer any result about the chance of survival of the weakest species.

2 The Model

Suppose that k individuals, each being either a Hawk (H) or a Dove (D), perform
independent random walks on the vertices of a graph G. When a hawk meets one
(or more) dove, it kills them all. When two hawks meet then they are both killed.
When two doves meet then nothing happens. More formally, when 2 individuals
meet, they play the symmetric 2 players game Γ (of two pure strategies H,D)
of payoff matrix

AΓ =
[
(0, 0) (1, 0)
(0, 1) (1, 1).

]
Here, row 1 is strategy H and similar for column 1.

Given the initial position of the Doves and the Hawks on the graph G, we are
interested in the probability that Doves survive the above process. We then say
that the Doves win the game.

For simplicity of analysis we present the following more specific model.

Definition 1 (The Distinct Hawks-and-Doves Model)
We define the distinct Hawks-and-Doves model in the following way:

1. Each individual starts on a different vertex of a connected graph G.
2. At every step a single individual is chosen uniformly at random and moves

equiprobably to a neighboring vertex.
3. When a Hawk meets several Doves on a vertex, he plays the game Γ with

every one of them, so that at the end of the step, no Doves remain on this
vertex. 1

1 An interesting variation of this is to assume that the Hawk plays the game with
exactly one Dove on the vertex.

The Survival of the Weakest in Networks 319

4. The process stops (and “the game ends”) when only one type of individuals
remains on the graph.

Representation of the Evolution Dynamics. It is easily seen that the evo-
lution in the Distinct Hawks-and-Doves model can be represented by a Markov
Chain. This is true, because all we need to know in order to specify the next
configuration of the model at some discrete time t is the number and position
of the individuals left on the graph. This can be a little tricky. The state space
of the Markov Chain will need a way to describe the individuals that have not
yet disappeared, as well as their exact location on G. The latter can be done
perhaps with a k-tuple each element of which describes the position of a single
individual. But the issue of which individuals have still remain on the graph
remains. As we will see below, things are considerably simpler when we have
exactly 1 Dove.

Single Dove Distinct Model. We will derive a Markov Chain that captures
the evolution of the distinct Hawks-and-Doves model in the case where we have
only 1 Dove. The state space of the Markov Chain is

I = {(d, h1, h2, . . . , hk−1) ∈ V (G)k}
i.e. the set of all k-tuples whose first position denotes the vertex of the dove
and whose i-th position denotes the vertex of the (i− 1)-th Hawk. Note that if
a vertex v appears an even number of times in some state s ∈ I, then all the
individuals on this vertex have been killed.

In order to describe the transition matrix P of the Markov Chain we need
some additional notation. For some s ∈ I, let v(s) be the number of hawks that
have v as their corresponding position in s. Then, (assuming that we have an
even number of Hawks) the absorbing states of the chain are A = {s ∈ I :
v(s) is even ∀v ∈ V }

⋃
{s ∈ I : d(s) is odd}, where d(s) is the number of hawks

that are in vertex d (i.e. the vertex of the dove) in situation s. If the chain is
absorbed in the first set, then the Dove wins, otherwise he loses. Let now, for
some transient state s ∈ I

k(s) = 1 + |v ∈ V : v(s) is odd|
i.e. k(s) is the number of players left when the state is s. Then the representation
matrix P has

Ps1,s2 =

⎧⎪⎪⎨⎪⎪⎩
1

k(s1)
1

degree(x) if s1 /∈ A, the individual chosen is on vertex x
and ∃u ∈ V : s2 = s1[x/u]

1 if s1 = s2 ∈ A
0 otherwise.

The notation s1[x/u] means that all occurencies of x in s1 have been replaced
by u.

320 S. Nikoletseas, C. Raptopoulos, and P. Spirakis

2.1 Some Interesting Problems

Let us now discuss some interesting open problems on this model.

Open Problem 1 (Absorbtion Probability). Given the initial position of
every individual, what is the probability that the Hawks are eliminated before all
the Doves do?

It is easy to see that if the number of Hawks is odd, then the probability that
the Doves win is 0 (as long as our graph is connected). The question becomes
interesting only in the case where there is an even number of Hawks.

As we will see, if the number of individuals k is constant, then the above
probability can be computed in O(npoly(k)) steps. Of course, using the same
method for k = k(n)→∞ we can get an exponential time algorithm. Is this the
best we can do? This gives rise to the following obvious question:

Open Problem 2 (Hardness). Given the initial position of every individual,
how hard is it to compute the probability that the Hawks are eliminated before
all the Doves do, in the case where k = k(n)→∞?

Even if it is not likely that we are able to compute the above probability in
polynomial time, we could possibly estimate it by running the model many
times and looking at the outcome after a large period of time. In order for this
technique to be usefull, the following should hold:

1. The outcome should be reached in a polynomial (expected) number of steps.
Of course, using the results of [9], we can see that an upper bound on the
expected time needed so that only Hawks or only Doves remain is at most
O(kn3), which is polynomial considering that k ≤ n. A slight improvement
to this bound can be found in [1]. However, both these techniques do not
take into consideration the strategy that each individual plays. This fact
may lower considerably the upper bound on the time needed to come to
a conclusion on whether the Doves or the Hawks finally win. For example,
consider the extreme case where there are exactly two Hawks. Then, using
the result of [9], the mean time needed until the time ends is just O(n3).
But this does not tell us anything on the possibility of the dove winning the
game.

2. The probability of dove survival should not be exponentially small (other-
wize we should have to simulate the game for an exponential number of
times to get a good result). In this paper we will show that when G is undi-
rected then the probability of dove survival in the distinct hawks-and-doves
model is lower bounded by the inverse of a polynomial in the number of
vertices n of G. However, this is not the case for directed graphs, as is shown
below.

Theorem 1. There is a directed graph G and suitable initial positions of the
individuals for which 0 < Pr(D survives) ≤ 1/2n/2 in the single dove distinct
hawks-and-doves model.

The Survival of the Weakest in Networks 321

Proof. Let G and the initial positions of the k − 1 hawks and the dove be as in
the following figure. Clearly, the probability that the dove survives is equal to
the probability that it reaches vertex Y . But the probability that this happens
is exactly 1

2k−1 = 1
2n/2 .

Fig. 1. An instance of a directed graph case with exponentially small probability of
survival

�
We conjecture that the exact calculation of Pr(D survives) is a #P-complete
problem for directed graphs.

3 Probability of Absorbtion

As we have discussed, the evolution dynamics of the model can be described by
a Markov Chain with state space I and transition matrix P . Without loss of
generality, we may assume that I consists only of two absorbing states sD and
sH , the first one being reached when only Doves remain (i.e. the Doves win) and
the second one being reached when only Hawks remain. Also we will denote by
fs the probability that the Doves win the game, given that the chain starts at
state s ∈ I. Let now F = [f1, f2, . . . , f|I|]T , for some ordering of the states in I.
Clearly, F is the unique nonegative solution that has fsD = 1 and fsH = 0, of
the following (matrix) equation

F = P · F . (1)

By classical methods used for the transient analysis of Markov Chains we can
get an algorithm that calculates the exact probability of absorbtion given any
graph (directed or undirected) and any initial positions of the k individuals in
O(n3k) time. For details, see [5].

In the sequel we consider undirected graphs.

Note: The state space of the Markov Chain describing the evolution of the
distinct model in the case of 1 Dove seems in a way easier to work with.
However, the open problems 1 and 2 remain interesting even in this case.

3.1 The Exact Probability of Absorbtion (Some Cases)

Let G denote the graph on which the individuals of the distinct hawks-and-doves
model move. Let also the number of Doves be 1 and the number of Hawks be

322 S. Nikoletseas, C. Raptopoulos, and P. Spirakis

k − 1 (even). Assume for a moment that every individual chooses his starting
vertex with some probability distribution on V (G). For individual i, let us call
this initial distribution Fi. Then, by symmetry we can see that the following
holds:

Lemma 1. If Fi = Fj for all individuals i
= j, then the probability that the
Dove wins (given that all individuals start at a different vertex) is

P (D wins) =
1
k
.

As we will see, when G is the complete graph, then Lemma 1 holds even in the
case where every individual starts on a separate vertex.

Complete Graph. We here assume that the graph on which the individuals
move is the complete graph Kn. Also, assume that we work with the distinct
hawks-and-doves model where the number of Hawks is k − 1 and we have only
one Dove (the general case with s Doves can be easily reduced to the case with 1
Dove and is discussed in the end of the section). Finally we assume that k− 1 is
even, because if it is odd, the probability that the Dove wins is 0 (G is connected
and there will always remain at least one Hawk). We can prove the following

Theorem 2. In the distinct hawks-and-doves model, when G = Kn, the number
of Hawks is k−1 (even number) and we have only one Dove, the probability that
the Dove wins the game is 1

k .

Proof. See [5].
�

Notice that the above result is actually a special case of Lemma 1. Suppose now
that we have s Doves instead of one and also, when a Hawk meets with several
Doves on a vertex, it “eats” them all. Then the number of Doves that survive
the process is actually a Binomial random variable X ∼ B(s, 1

k). Hence

P (D wins) = 1− P (X = 0) = 1−
(

1− 1
k

)s

.

Cycle. We now assume that the graph G on which the individuals move is the
cycle Cn. We consider the distinct hawks-and-doves model where the number
of Hawks is 2 and we have only one Dove. This choice of parameters is made
because of the following reasons:

1. The probability that the Doves win in the case of one Dove is a lower bound
on the probability that the Doves win in the case of more than one Doves.
So, a lower bound for the first case applies also for the second (more general)
case. Notice that this is true irrespectively of the graph G.

2. In the case where the graph is Cn and we have k−1 hawks and 1 Dove, a lower
bound on the probability that the Dove wins is actually the probability that
the Dove wins when it starts from a vertex with two Hawks on its adjacent

The Survival of the Weakest in Networks 323

vertices. This is true because (a) only the first Hawk to the Dove’s right and
the first Hawk to the Dove’s left can end the process in favor of the Hawks,
i.e. “eat” the Dove and (b) all that the rest of the Hawks do is to turn these
two further away from the Dove.

We can now prove the following (see [5] for the proof).

Theorem 3. In the distinct hawks-and-doves model with 2 Hawks and one
Dove, the probability that the Dove wins when G = Cn and the initial distances
of the two Hawks from the Dove are i0, j0 is at least 1

n2 . �

4 Testing for Survival in Polynomial Time

In the distinct hawks and doves model with a single dove D we examine here
the decision problem:

SURVIVAL: Given G and initial positions I of the k individuals (at most one
per vertex, so k ≤ n) and having only one Dove (i.e. k − 1 hawks), has the
Dove a positive probability to survive?

Note that when k − 1 is odd then D cannot survive because eventually a
single hawk will remain with certainty and then meet D and kill it. Thus the
problem is interesting when the number of hawks is even. In this case, two cases
are absorbing states: (1) no particle survives or and (2) D survives.

We will show here that we can decide Pr(D survives) > 0 in polynomial time.
Note that the two cases shown in figures 2 and 3 (call them extinction graphs)
have Pr(D survives) = 0.

Fig. 2. Line extinction graph: a line with the dove between two groups of odd hawks
each

In fact, we can prove the following

Theorem 4. If we assume that we have an even number of hawks and a single
dove, then the Line and the Star extinction graphs are the only cases for which
Pr(D survives) = 0.

Proof. See [5].
�

In the case of many doves and an even number of hawks we can similarly show
that

Theorem 5. The Line with all the doves between two hawks and the star with
all the doves in the center (and hawks on all other vertices) are the only cases
for which the probability of some dove surviving is zero.

Using Theorem 4 it is easy to see that we can decide in polynomial time if there
is a positive probability that the dove survives.

324 S. Nikoletseas, C. Raptopoulos, and P. Spirakis

Fig. 3. Star extinction graph: a star with the single Dove in the middle and no free
vertices

5 The Probability of Dove Survival Is at Least 1/poly(n)

5.1 Introduction

We show here that when Pr(D survives) is non-zero, then it is at least 1
poly(n) .

We first analyse carefully two “hard” cases, that are produced from slight mod-
ifications of the extinction graphs. Then we use them to show the general
case.

Our analysis methology is to bound the probability of dove’s survival from
below, by estimating the probability of particular sequences of moves of particles,
in all of which the dove survives. When I, I ′ are two spontaneous descriptions of
the positions of the particles (configurations) then the event “I moves to I ′ safely
for D” means that there exists a sequence of moves of particles transforming I
to I ′ without D being killed in the process. We denote this by I

s⇒ I ′ (s for
“safely”).

Clearly, if A is the event “Dove will eventually survive provided particles play
the game starting from I” and B is the event “Dove will eventually survive
provided particles play the game starting from I ′”, then

P (A) ≥ P (I s⇒ I ′)P (B).

In the sequel, events like A are described (for economy) as “Dove survives given I”.

5.2 The First “Hard” Case

Consider the case depicted in figure 4. We will denote this by (G1, I1).
Notice that this case is a slight modification (i.e. with one extra edge) of the

Line extinction graph, in order to have non-zero probability of dove survival.
Intuitively, we can see that this must be the worst case when we have only 2
hawks and 1 dove. We can prove that (see [5] for the proof).

Theorem 6
Pr(Dove survives given I) ≥ c · 1

n5
.

where c is a constant. ♦

The Survival of the Weakest in Networks 325

Fig. 4. Case (G1, I1)

5.3 The Second “Hard” Case

Consider the case depicted in figure 5. We will denote this by (G2, I2). Ai, i =
1, . . . , k are the initial positions of the hawks and 0 (root) the initial position of
the Dove.

Notice that this case is a slight modification of the Star extinction graph, that
has non-zero probability of dove survival. In order to lower bound the probability
that the dove survives, we need the following definition

Definition 2 (Generalized Dove’s Fortune). Given an initial configuration
I2, the fortune of the dove is defined to be the k-tuple

F (I2)
def
= 〈distanceI2(H1,D), . . . distanceI2(Hk−1,D)〉 .

We will say that F (I) ≤ F (J) if for all hawks distanceI(Hi,
D) ≤ distanceJ(Hi,D), i = 1, . . . , k − 1. Although it is difficult to compare
two configurations I, I ′ in the general case, it is easy to verify that when the
Dove is in the root vertex of G2 and F (I) ≤ F (J), then the probability that the
dove survives is smaller for I. Indeed, the closer the hawks are to the dove, the
less space does the latter have to move. Hence

Lemma 2. When the dove is in the root vertex of G2 we have

F (I) ≤ F (I ′) ⇒ Pr(D survives given I) ≤ Pr(D survives given I ′).

So, the probability that the dove survives given I2 is at least the probability
that the dove survives when all the hawks are adjacent to it. Note also that in
this situation, if we remove some edge from the end of a branch, then we “help”
the hawk on this branch to move towards the dove, so the probability that the
dove survives becomes smaller. Thus, the probability that the dove survives in
the case (G2, I2) can be lower bounded by the probability that the dove survives
in the case (G′, I ′) that is depicted in figure 6.

To find the probability of dove survival in this case, it is easy to see that if the
dove wants to survive we must first arrive at a situation where H ′ is on vertex
2 and D on vertex 1. Let us call this configuration I ′′. The easiest way to reach
I ′′ from I ′ is to move H ′ first to 2 and then the D to 1. So we have

P (we reach I ′′ given I ′) ≥ 1
k

1
2
· 1
k

1
k − 1

≥ 1
2
· 1
k3
.

326 S. Nikoletseas, C. Raptopoulos, and P. Spirakis

Fig. 5. Case (G2, I2): Dove is on the root initially

Fig. 6. Case (G′, I ′)

Given I ′′, the probability that some two hawks, other than H ′ meet is obvi-
ously at least k−2

k · k−3
k . In this new situation (call it I ′′′), let us condition on

the event that the D moves before H ′ and it moves to vertex 0 (event E1). This
happens with probability 1

4 . Also, let us condition on the event that if the dove
”escapes” from the center of the graph without being eaten and before H ′ has
moved, then it does not return to vertex 1, but to one of the vertices of the two
hawks that met before it moved (event E2). This happens with probability 2

3 .
But it is easy to see that given E1, E2 and I ′′′, the probability that D survives is
the same as some hawk’s H other than H ′. Also, it is clear that the probability
that H ′ survives is strictly larger than the probability of survival of any other
individual. Then, we must have that the probability that H ′ together with D

and some H
= H ′ are the last three to survive is at least k−4

(k−2
3) ≥

6(k−4)
k3 . Let us

denote the situation where only H ′,D and some H
= H ′ have survived by I ′′′′.
Then we have seen that

P (we reach I ′′′′ given I ′) ≥ 1
2

1
k3
· k − 2

k

k − 3
k

· 1
4
· 1
3
· 6(k − 4)

k3

The Survival of the Weakest in Networks 327

Given now that only these have survived, the probability that the dove sur-
vives is obviously constant. We have thus proved that the probability that the
dove survives given I ′ is at least c · 1

k5 ≥ c · 1
n5 . So

Theorem 7. In the second hard case (G2, I2) the probability that the dove sur-
vives is at least c · 1

n5 .

6 The Case of a General Graph G

Let I be the initial position of the particles in G. Since the probability that the
Dove survives is non-zero, the number of hawks is even and also (if G is not a
cycle which we handled earlier)

(a) either the tree of shortest paths from the Dove to the Hawks has at least 4
branches or

(b) the Dove is in a line with hawks left and right but the line connects (at least
in one of its ends) to a subgraph G′ with at least a node of degree 3 and a
free position.

Set PS(D, I) ≡ Pr(D survives given I). From the case (G1, I1) we get

PS(D, I) ≥ 1
poly(n)

· PS(D, I1)

where the HDH block moves to the left end of the line and the left H and D
enter G′. But then, if I is as in case (b) (call it Ib) we get

PS(D, Ib) ≥
1

poly(n)
· PS(D, Ia)

where Ia is as in case (a). Note now that Ia is very similar to the case (G2, I2).
The only difference is that there may be non-tree paths (with hawks) in the tree
of shortest paths from D to the hawks positions. These hawks do not reduce
the probability of dove’s survival since they can only eat other hawks before
eventually having a situation like (G2, I2). Eventually

PS(D, Ia) ≥ 1
q(n)

· PS(D, I2)

but we know that PS(D, I2) ≥ 1
r(n) , where q(n), r(n) are polynomials. So we get

our main theorem.

Theorem 8. For any undirected graph G = (V,E) with an even number of
hawks and a single dove and any initial positions I of the particles

PS(D, I) > 0 ⇒ PS(D, I) >
1

π(n)

where π(n) is a polynomial in |V | = n.

328 S. Nikoletseas, C. Raptopoulos, and P. Spirakis

Fig. 7. The general case

Note that when we start with more doves, the probability that the doves win is
even better. Hence

Corollary 1. For any undirected graph G = (V,E) with an even number of
hawks, any number of doves and any initial positions I of the particles, if the
probability of at least one dove surviving is non-zero, then it is at least 1/π(n),
where π(n) is a polynomial of the number of vertices n of G.

From the above we can get the following

Corollary 2. We can approximate the probability of only doves surviving, within
any degree of accuracy in expected polynomial time, for any graph G and initial
positions I.

Our method just simulates the game (until it ends) polynomially many times and
counts the frequency of cases where only doves survive at the end. For details,
see the full version of this paper [5].

7 Conclusions and Future Work

We presented and analyzed here a simple but non-trivial model of antagonism
in networks. We have proved that predicting the eventual survival chances of the
antagonistic species can be done efficiently in the case of undirected graphs. We
conjecture that the exact estimation of Dove’s survival chances is a #P -complete
problem in the case of directed graphs. We are currently working on extensions
when Doves reproduce when they meet, e.g. let α ≥ 2 doves be born when 2 doves
meet. Note that when dove reproduction is allowed, even the case of an odd num-
ber of hawks becomes non-trivial, as hawks and doves can co-exist. Thus, it is
interesting to investigate the eventual population mixture as well as the existence
(or not) of a threshold (for α) below which hawks win almost certainly at the end.

References

1. N. Bshouty, L. Higham and J. Warpechowska-Gruca, “Meeting Times of Random
Walks on Graphs”, Information Processing Letters, 69:259-256, 1999.

2. L. A. Imhof, “The long-run behaviour of the stochastic replicator dynamics”, Annals
of Applied Probability, 2005, Vol. 15, No. 1B, 1019-1045.

3. M. Kandori, G. J. Mailath and R. Rob, “Learning, Mutation and Long Run Equi-
libria in Games”, Econometrica, Vol. 61, No. 1 (Jan., 1993), 29-56.

The Survival of the Weakest in Networks 329

4. J. Maynard Smith, “Evolution and the Theory of Games”, Cambridge University
Press, 1982.

5. S. Nikoletseas, C. Raptopoulos and P. Spirakis, “The Survival of the Weakest in
Networks”, http://students.ceid.upatras.gr/∼raptopox/HawksandDoves.ps

6. J. Norris, “Markov Chains”, Cambridge University Press, 1997.
7. S. Ross, “Probability Models for Computer Science”, Harcourt Academic Press,

2000.
8. L. Samuelson, “Evolutionary Games and Equilibrium Selection”, MIT Press, Cam-

bridge, Massachusetts, London, England.
9. P. Tetali and P. Winkler, “On a random walk problem arising in self-stabilizing

token management”, in the Proceedings of the 10th Annual ACM Symposium on
Principles of Distributed Computing, pages 273-280, 1991.

10. J. W. Weibull, “Evolutionary Game Theory”, MIT Press, Cambridge, Mas-
sachusetts, London, England.

Online Distributed Object Migration

David Scot Taylor

San José State University
taylor@cs.sjsu.edu

Abstract. We study Distributed Object Migration using competitive
analysis. The problem is motivated by distributed object-oriented com-
puting, for which intelligent dynamic migration of (Java or other object-
oriented) objects during runtime is important for efficient implementa-
tion on multiprocessor systems. In the online version of the problem,
k mobile objects reside at n nodes of a network and they respond to
a sequence of requests. Each request specifies two objects which have
to communicate, and the algorithm has to decide whether to bring the
objects together or not. We focus on the case of uniform networks with
relatively large communication costs and show tight upper and lower
bounds of k, for any network size n ≥ 2. Our algorithm Timestamp uses
a timestamp for each object, and we analyze it using an implicit poten-
tial function argument; the analysis is interesting in its own right, and
may be applicable to a wider class of problems, but it doesn’t seem to be
widely used. This implicit potential function argument gives a simple and
intuitive proof of the (suboptimal) competitive ratio of 2k − 1, within
a factor of 2 of the optimal deterministic competitive ratio. To show
the optimal competitive ratio of k, we use an explicit, yet less intuitive,
potential function.

Keywords: Online Algorithms, Competitive Analysis, Distributed Al-
gorithms, Data Management, Object Oriented Programming.

1 Introduction

In distributed object-oriented computing on multiprocessors or on a computa-
tional grid, the time for communication between objects located on two separate
processors (or nodes) may be very large compared to the time for communication
within the same processor. To best exploit high processor speeds, objects may
migrate to new processors, in an attempt to minimize inter-processor communi-
cation costs. Further complicating the issue is the fact that frequently, decisions
about where the objects should reside must be made online, that is, without
knowledge of future events.

We consider here the online version of Distributed Object Migration (dom):
a distributed program, consisting of a collection of self-contained objects, runs
on an n processor network. At any given time, each object resides at some node
(processor) of the network. Some objects are mobile and can move freely to every
node of the network and some objects are immobile because they are associated

T. Erlebach and C. Kaklamanis (Eds.): WAOA 2006, LNCS 4368, pp. 330–344, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Online Distributed Object Migration 331

with the particular node on which they run. When two objects on different
machines need to communicate some amount of data c, and one of the objects is
mobile, the system is presented with the following dilemma: should the objects
be brought closer together or not? Further, if both objects are mobile, which
object(s) should be moved? There are different costs associated with each option.
The cost of moving objects from node u to node v depends in general on the
type of the object as well as the nodes u and v. Also, the cost for communicating
an amount of data c between nodes u and v is equal to d(u, v) · c, where d(u, v)
is the distance in the network between nodes u and v. In this work, we mostly
consider the uniform case, in which all distances are one, and all objects have
size one. This case will help to illustrate key differences between this work and
previously studied problems.

The problem can be simplified somewhat with respect to the immobile objects.
Firstly, each node needs at most one immobile object, because for all purposes,
multiple immobile objects at the same node are interchangeable. Next, in our
uniform, complete network, a node that contains no immobile object can, with a
fixed cost, be removed completely from consideration; mobile objects beginning
at such a node can initially be moved to other nodes, after which the node will
never be used again. In summary, for the uniform complete network, we can
assume that each node of the network contains precisely one immobile object.
Henceforth, we assume that there are n immobile objects, one on each node,
and k mobile objects free to move between nodes. Also from the point of view
of competitive analysis, it makes no sense to consider requests between two
immobile objects. Both the online algorithm and the optimal offline algorithm
are forced to service this type of request in the same way, with the same cost, and
therefore they will only decrease the competitive ratio. If any such requests are
made, any online algorithm could simply answer them while otherwise ignoring
them, at no harm to its competitive ratio.

The problem belongs a general class of migration problems, including the in-
tensively studied File Migration, File Allocation, and Distributed Paging Prob-
lems [2,3,4,8]. Of these, the problem closest to dom is the File Migration Prob-
lem [8], in which files are stored on a distributed network, and different nodes
access the files. The system attempts to minimize communication costs in case
the files being accessed can be moved from one processor to another: within a dis-
tributed network, the cost of accessing a file is proportional to the distance from
the requesting processor to the file. Alternatively, the file can move locations, at
a cost of the distance moved multiplied by the size of the file.

dom is a generalization of the File Migration Problem. While dom allows re-
quests between any two objects, the File Migration Problem only allows requests
between an immobile and a mobile object.

We study dom in an online setting, using competitive analysis [18] to measure
the quality of the algorithm which determines object migration. Requests come
one at a time, and after each request, the algorithm decides how each object
should migrate before the requested objects communicate. Once the request is
serviced, the next request is made. The algorithm has no knowledge of future

332 D.S. Taylor

requests. We measure the quality of an online algorithm by its competitive ra-
tio, equal to the worst case ratio of the cost the algorithm over any sequence
of requests, divided by the optimal cost required satisfy the same sequence.
Oftentimes, the sequence is considered to be picked by an “adversary”, which
specifically chooses a sequence for which the online algorithm will have high
costs, but the optimal (offline) solution costs will be small. The online algorithm
is playing against the adversary, where the online algorithm tries to minimize
competitive ratio, and the adversary tries to maximize it.

The abstract is organized as follows: in Section 2, we give a formal problem
description, and introduce an important special case of the algorithm. This is
followed by further discussion of related previous work. In Section 4, we prove a
lower bound of k for the deterministic competitive ratio of every network metric
space, even those with only two nodes. In Section 5, we describe a simple, natural
algorithm, the Timestamp algorithm. In Section 6, we prove a competitive ratio
upper bound of 2k − 1 for the basic problem variant using an intuitive implicit
potential function, which is analyzed without explicitly writing any equation for
the potential. In Section 7, a more complex potential function is given explicitly,
and it is used to show that Timestamp has the optimal deterministic competitive
ratio of k for the variant. Although this section uses standard potential analysis
techniques, we use intuition gained from the implicit potential analysis to explain
why the explicit potential function works, and to break it into two intuitive parts.
Section 8 summarizes contributions and outlines future research directions.

2 Problem Definition

Problem Setting: We are given a weighted graph of n nodes, where the nodes
represent machines or processors, and the edge weights represent (metric)
distances between the processors. There are also objects that reside on the
nodes of the graph. There are k mobile objects and n immobile ones, one for
every node of the graph. At every time step, each object is at some node of
the graph; initial positions of mobile objects are given. In general, objects
have sizes specified, but we mostly consider the case of same-size objects.

Online Input: Requests for object communication come online. Each request
consists of a pair (x, y) of objects and a cost c representing the amount of
data which needs to be exchanged between x and y. After each request, any
of the k mobile objects can be moved from one processor to another. The
cost of moving a mobile object z of size s(z) from u to v is s(z) · d(u, v),
equal to the product of its size and the distance moved. Then an additional
cost of d · c is paid if the requested objects are still d distance apart.

Output: After each input request, the algorithm must decide any object move-
ment before the next request.

For our upper bound results (Sections 6 and 7), we study a specific variant
of the problem. First, all objects will have unit size, as might occur when the
distributed program consists of many different instances of the same, fixed-size

Online Distributed Object Migration 333

object type. Next, the network is uniform, with all nodes 1 unit apart. Finally,
all communication costs will be relatively large, with c ≥ 2. For this case, we can
assume without loss of generality that any algorithm will answer queries between
objects only after the objects are on the same machine. We will call this Basic
Distributed Object Migration, or bdom.

Although bdom is somewhat restricted, it is an important dom variant.
Specifically, it helps to highlight dom’s differences from previously studied work.
Given its similarities to the file migration problem, one might hope to see sim-
ilarly competitive solutions for dom, yet we show that this is impossible. In
file migration, separate files can be considered independently; the system can
achieve an O(1) competitive ratio on one file, so the same algorithm will achieve
an identical ratio for a multi-file system. The total number of files in the system
is irrelevant. In contrast, for dom, requests between two mobile objects allow
for direct interaction between the objects, and so the number of objects in the
system is an important ingredient for the competitive ratio. In dom, if there is
just one mobile object (and thus only requests between it and immobile objects,
as in file migration), but all requests carry high communication costs, a triv-
ial 1-competitive algorithm exists, but this proves nothing about performance
with multiple mobile objects. We prove requests between two mobile objects add
complexity to the system beyond that of file migration, even in simple systems:
for bdom, further restricted to just just two processors, there is a lower bound
of k for the competitive ratio of any online algorithm of k mobile objects. This is
quite different than the already known O(1) upper bound for the file migration
problem on general networks.

Requests between two mobile objects are fundamentally different than those
previously considered in file migration, distributed paging, or caching problems.
Beyond the previously considered questions of if an object should move and
where an object should move to, we must also consider which object moves.
bdom, analyzed here, will concentrates study on this last facet, while the more
general version of dom also need to address previously considered issues.

3 Related Work

There is a long list of previous work on problems related to dom, too long to be
fully described here. Previous work related to the analysis technique introduced
here (implicit potential analysis) is somewhat more limited.

dom was motivated by a discussion with Miriam Busch about the distribut-
ing Java compiler Pangaea [9,20]. Panagaea acts as a front end for a Java com-
piler, and it is used to distribute objects which can dynamically migrate during
runtime. Benchmark results show a marked improvement in performance over
a static system. The benchmark test is based on the the dining philosopher’s
problem, and the performances of various migration rules are compared.

dom is a generalization of the file migration problem, introduced in [8], which
spawned a family of online data management problems. For a survey on earlier
systems, involving the (static) distributed file assignment problem, see Dowdy

334 D.S. Taylor

and Foster [15]. For a survey on early work on dynamic systems, see Bartal’s
1996 survey in [16]. This includes many references to the file migration problem
(in which one copy of each file is present on a network, and they migrate as they
are called by users), the file allocation problem (in which files may replicate
to help make read operations more efficient, but write operations must update
all copies), and the distributed paging problem (in which each processor has a
limited capacity). The survey covers work on both limited topologies and general
networks. Although much work on these topics has occurred since 1996, most
of it relates to adding more generality (network topology) or subtlety (such as
direct mapping issues [2]) to the basic variant we will consider for dom in this
work. None of these systems need to address the question of which object should
migrate, as only one object can satisfy a given request. Only in the paging
problem do the moving objects (pages) interact at all, but there it is indirectly,
through limited processor capacities.

The static offline case of object migration (which involves no migration) is
equivalent to the Multiway Cut problem [10,14]. The n + k immobile and
mobile objects represent the vertices of the graph to be cut, and the n immobile
objects represent the specific vertices (terminals) which must be separated by the
cut. Each pair of objects needs only one request between them, with cost equal
to the weight between the matching vertices in the Multiway Cut problem.
This problem is known to be MAX SNP-Hard for 3 or more terminals since 1983.
(Note, in the distributed Java objects case of [9], a static benchmark instance is
used, but it is one which is easy to solve optimally.)

Of separate interest from dom is the analysis technique used here, with a
goal of making analysis simpler and more intuitive. The lazy potential, which
we use in Section 6, is used (explicitly by equation, not implicitly) by Chrobak
and others in [7,11,12]. Working towards the goal of making competitive analy-
sis more intuitive, the potential function argument is completely eliminated by
Koutsoupias in [17]. The author doesn’t know of any previous specific attempts
to perform implicit potential function analysis, but in the seminal online analysis
papers by Sleator and Tarjan [18,19], potential functions are described in some
detail rather than explicitly given by equations. This technique does not seem
to be widely used, although it gives more intuition about the algorithms used,
while reducing the complexity of equations analyzed.

4 Lower Bounds

Two helper lemmas will be useful to prove the problem lower bound (Lemma 3).
Their proofs are omitted due to space constraints. Further, the proof for Lemma 3
has been greatly condensed. The proofs for these lemmas are either straightfor-
ward (for the helper lemmas) or follow well-established techniques (for Lemma 3).
More difficult or novel proofs in following sections are given in full.

Lemma 1. In dom, for each request (x, y), regardless of cost c, the optimal
online (or offline) algorithm need not move any object other than x or y. For

Online Distributed Object Migration 335

the problem with two processors (n = 2), there is never a need to move both
objects for any request.

Lemma 2. In dom, for each request between objects x and y, if the size of the
communication request c is at least twice the size of the smaller object, without
loss of generality, the optimal online (and offline) algorithm can move x and y
to be on the same machine before they communicate to satisfy the request.

Lemma 2 shows that requests with large enough communication costs can al-
ways be answered by moving objects to the same node. Large requests make
the problem simpler, eliminating “ski renter’s dilemma” issues of whether or
not an object should be moved. For related problems, see Karlin’s chapter
in [16].

Lemma 3. On two (or more) processors with any k (positive weight) mobile
objects, the deterministic competitive ratio of dom is at least k.

Proof. We use a standard lower bound argument, proving that for any online
algorithm, the cost is equal to the combined cost of k specified offline algorithms,
and thus must have cost at least k times larger than the smallest among them.

Consider just two processors. Suppose that initially, one processor contains
only itself, called the (immobile) object 0, while the second processor contains
itself (immobile object k+1) and regular (mobile) objects 1, 2, . . . , k. The adver-
sary will always make large communication requests between consecutively num-
bered items not on the same server, starting with (0, 1). Proof details are omitted
due to space constraints, but the only configurations which need be considered
(by Lemmas 1 and 2) are those with objects 0 . . . i on one server and i+1 . . . k+1
on the other, for 0 ≤ i ≤ k. The online algorithm will be in one such configura-
tion, and the adversary will have one offline algorithm for each of the other k such
configurations.

This lower bound for the competitive ratio of dom is much higher than that
of the File Migration Problem (see Section 2), even with just n = 2 pro-
cessors. This bound is proven tight for bdom in Section 7, using algorithm
Timestamp.

5 The Timestamp Algorithm

The following algorithm is intuitively simple, and it achieves a competitive ratio
of k for bdom, the basic distributed object migration problem. It makes use of
a unique “timestamp” for each online request, for which any strictly increasing
function will suffice, including time, or sequential identification numbers. Given
a request to objects (x, y), they can decide which should move without knowing
information about any other objects. For simplicity in our proofs, we will assume
that the timestamp is simply a globally known time.

336 D.S. Taylor

Algorithm Timestamp1:

1. Initialize all mobile objects with arbitrary timestamps, such that all are
previous to the time of the first request, and no two objects residing on
different processors have the same timestamp.

2. To satisfy a request between mobile objects (x, y), move the object with
the least recent timestamp to the machine of the other object, and update
the timestamp of the moving object to match the other object’s timestamp.
(That is, if x moves, give x the same timestamp that y has, ignoring the
timestamp of the current request.) If the objects are already on the same
machine, simply update the timestamp of the earlier object to match the
object with the later timestamp.

3. When a mobile object is requested with an immobile object, the mobile
object moves to the other’s processor, and updates its timestamp to be the
current time, that is, the time of the current request. (If it is already on the
correct processor, it just updates its timestamp.)

Note that timestamp is a concept only used by the online algorithm, and thus,
when we refer to the timestamp of an object, we refer to the timestamp assigned
to that object by the online algorithm. Intuitively, when an object is called to
a processor, we give it a new timestamp to indicate that the object must be at
that processor at that time in any optimal algorithm. For requests between two
mobile objects, the one with “less recent information” moves and “updates” its
information to match the more recent object’s timestamp.

In analyzing Timestamp we will make use of the following simple lemma:

Lemma 4. (a) If two mobile objects have the same timestamp, they reside on
the same processor. (b) Other than the initial timestamps, all mobile objects will
have the timestamp of a request involving the processor on which the reside. (c)
Other than initial timestamps, new timestamps are only introduced to the system
during requests involving processors (immobile objects).

Proof. Part (c) is clear from the algorithm, where only the last rule introduces
new timestamps. For parts (a) and (b), we use induction. (a) holds at the start by
the initialization, and (b) is trivially true at the start. Timestamp only changes
the timestamp of an object when that object is moved, or when a request which
can be answered “for free” is made (which will not violate the properties). If it
is moved due to a request between two mobile objects, its timestamp is changed
to match the timestamp of an object on the machine it moves to, which is (a)
inductively different than any timestamp on any other machine, and also (b)
inductively the same as a timestamp of a request of the processor to which the
object is moving (or one of the initial timestamps). If it is in a request with a im-
mobile object, the timestamp will be updated to one more recent than any other,
1 Timestamp is a natural name for this and many other algorithms for other prob-

lems, especially those involving distributed systems, or “LRU” variants for paging
algorithms (such as Albers [1]). The algorithm here is different, but the name is so
natural, I have chosen to reuse it anyway.

Online Distributed Object Migration 337

that is, it will be updated to the current time, so (a) still holds. Its new timestamp
matches the latest request, which also involves the processor to which the object
is being moved, so (b) is also maintained.

In Section 6, using implicit potential function analysis, we prove that Times-
tamp has a competitive ratio of no more than 2k− 1 on bdom. This is followed
in Section 7 by a tight, explicit potential function analysis which shows it to
have the optimal competitive ratio k, matching the lower bound from Lemma 3.

6 The Lazy Potential and Implicit Analysis

For many online problems, it is difficult both to find and analyze a useful poten-
tial function. While finding potential functions, certain “tricks of the trade” are
sometimes used, but they are not obvious to the reader of final paper versions,
where only the successful potential functions are given. Instead, the potential
function is often presented as a somewhat complex and seemingly arbitrary equa-
tion. While the potential and its analysis offer a convincing proof of algorithm
performance, they offer little insight into how the algorithm works, or what the
potential represents, especially for those new to online algorithm analysis.

Here, rather than pulling a complex equation out of a hat, we use a natu-
ral potential, the lazy potential2, defined below. Next, we are able to analyze
Timestamp using the lazy potential implicitly: that is, without ever giving an
explicit equation for the lazy potential, we are able to prove that Timestamp
has competitive ratio at most 2k − 1. This proof should give the reader much
more intuition than a standard, explicit potential argument, although an ex-
plicit potential (Section 7) can prove a tight bound of k on the competitive ratio
of Timestamp. There, we show how a more complex (and precise) potential is
composed of two natural parts, one of which is the lazy potential.

Given configurations for both the online algorithm and an offline adversary,
the lazy potential is defined as the maximum total amount of work that the
adversary can force upon the online algorithm while doing no work (and moving
no objects) in its own configuration. (Here, a configuration includes the position
and the timestamp assigned by the online algorithm for each object.)

For bdom, the lazy potential is simply the maximum total number of move-
ments which the adversary can force upon the online algorithm while not moving
any of its own objects, making requests it can answer for free. Note, we are not
restricting the adversary to any subset of algorithms, it may make any move-
ment at any time (even without requests). Nevertheless, at any point in time,
the potential function between an online and offline configuration is equal to the
maximal cost which the online algorithm can incur by a sequence of requests
for which the adversary does not move. We will call any such request, which the
adversary can answer without cost but which the online algorithm must move
to answer, a lazy request.
2 The term lazy potential, and its analysis, is explicitly used in (at least) [7,11,12], but

the author believes that many more online algorithms make use of the lazy potential
for all or part of their potential function, without using the name.

338 D.S. Taylor

Here the lazy potential is defined for dom, but it clearly generalizes to cover
many online problems where the adversary can make requests which it can an-
swer for free, but the online algorithm, in a different configuration, must pay.
These requests force any competitive online algorithm to (eventually) converge
to the offline algorithm’s configuration.

Lemma 5. For bdom with k mobile objects on n machines, Timestamp has a
lazy potential of no more than k(k + 1)/2.

Proof. First, notice that in Timestamp, a migrating object will never be as-
signed the same timestamp more than once. The algorithm only assigns times-
tamps when an object moves, and the new timestamp will be strictly larger
(more recent) than the old timestamp.

Next, from given time t forward, during the course of any series of lazy re-
quests, if Timestamp ever assigns an object a timestamp of t or later, that
object can never be forced to move again by a sequence of only lazy requests.
In order to introduce timestamps larger than t, requests involving processors
must be made, by Lemma 4.c. (Prior to time t, no object will have timestamp
t or later.) Such a request between a mobile object and a processor freezes that
mobile object onto that processor: it must be on that processor to answer that
request in a lazy way, and thus the adversary cannot move it to any other pro-
cessor without incurring movement costs, which is not possible with only lazy
requests.

Putting these together, the object with the ith newest (largest) timestamp can
only be assigned at most i new timestamps in any sequence which doesn’t require
any movement from the adversary. That is, i− 1 more recent timestamps from
other mobile objects may be possible, and one additional timestamp due to a
request by a processor, for at most

∑k
i=1 i total movements by lazy requests.

For any problem where there the minimum cost of a move for the offline algorithm
is bounded away from 0, proving any finite bound on the lazy potential is enough
to prove a finite bound on the competitive ratio of a problem:

Corollary 1. For bdom with k mobile objects on n processors, Timestamp has
a competitive ratio of k(k + 1)/2 or less.

Proof. Any movement by the adversary can at most increase the lazy potential of
Timestamp by k(k+1)/2, by Lemma 5. (The lazy potential is 0 here if the online
and offline configurations match. It is never negative.) It costs the adversary one
to move.

If we are somewhat more careful of how much a single move by the adversary
can change the lazy potential, we can prove a stronger result, within a factor of
2 of the correct bound:

Lemma 6. For bdom with k mobile objects on n processors, if the offline al-
gorithm moves an object from server i to server j, and server j has the set of
objects Sj on it before the move, the increase to the lazy potential against the
online configuration of Timestamp is 2|Sj |+ 1 or less.

Online Distributed Object Migration 339

Proof. The lazy potential is finite, as shown above. Here we bound its change
from one offline move.

Given an offline configuration, the only lazy requests possible are those be-
tween pairs of objects on the same offline machine, and those between objects
and the offline processor on which they reside. Fix some sequence of lazy re-
quests which would incur the lazy potential. We consider the lazy potential to
be broken into n subsequences, based on which of the n offline processors the
objects for that request reside. Each of these processors accounts for some part
of the entire lazy potential, and the sum over all n processor subsequences will
be equal to the lazy potential.

Consider the offline move of an object from processor i to processor j. The lazy
potential due to processor i cannot increase: any sequence of lazy requests for
objects on processor i without the moved object would have been valid before
the object moved, so if the new potential due to objects on that processor is
higher, the old potential from objects on that processor must not have been
maximal. Further, for any processor besides i and j, the potential from objects
on that processor does not change. How much can the potential due to the object
moving to processor j?

We know that no object can be called to (or from) the same timestamp more
than once. Let the set of objects originally on processor j is Sj , and suppose that
there are m offline objects from the Sj with (online) timestamps older than that
of the offline object being moved. The potential due to processor j is increased
by at most |Sj |+m+ 1: the m older objects might now have an additional lazy
request possible in which they are assigned the timestamp of the moved object,
and another where they have their timestamp updated from that timestamp,
for 2m total. Also, the moved object might now be eligible for |Sj | − m + 1
lazy requests: one to each of the |Sj | − m more recently timestamped objects
on processor j, and one to the jth processor. This makes for |Sj |+m+ 1 total,
where m ≤ |Sj|. Thus, the potential is increased by at most 2|Sj |+ 1.

Corollary 2. In bdom on k mobile objects on n processors, Timestamp has a
competitive ratio no more than 2k − 1.

Proof. In Lemma 6, |Sj | ≤ k − 1.

Notice the simplicity of using the lazy potential. By separating the offline and
online moves, above we analyze that the offline move (cost 1) raises the lazy
potential by at most 2k − 1. By definition, online moves will not lower the lazy
potential below zero; it can always be used to pay for the online move, as it is
defined to be the maximum amount of online work which can be forced without
any offline work. Here, by not explicitly stating the potential function, almost
all algebraic complexity is eliminated from the proof.

We do not expect the lazy potential to be sufficient to prove the optimal
competitive ratio for most problems; here, it is sufficient to prove a ratio within
a multiplicative factor of 2 from optimal, as we will see in the next section.
Proving within an O(1) factor with the lazy potential may the best we can
hope for, because some configurations may be intrinsically easier for the online

340 D.S. Taylor

algorithm, or for the adversary, and this is not captured by the lazy potential.
Next, we will see a potential for Timestamp which is made of two parts: one
part is the lazy potential, and the other very closely related, although it is
independent of the online configuration.

7 Tight Bounds for Timestamp

Lemma 7. For bdom with k mobile objects on n processors, Timestamp has
a competitive ratio of at most k.

Proof. To prove a tight upperbound, we use a standard potential argument.
Let Si, for 1 ≤ i ≤ n denote the n sets of objects located on each of the n
offline processors. Given online and offline configurations on and off , let xi,j ,
where 1 ≤ j ≤ |Si|, be the |Si| migrating objects from set Si, where j′ > j
implies that timestamp(xi,j′) ≥ timestamp(xi,j). (That is, objects with higher
indices have more recent timestamps, with ties broken arbitrarily.) Let xi,|Si|+1

be the non-migrating object on processor i. For object x, let M(x) be the online
machine which holds the object. (Note, for all 1 ≤ i ≤ k, M(xi,|Si|+1 = i).
Finally, let G(i, j) be an indicator variable which has value 1 if 1 ≤ j ≤ |Si| and
M(xi,j)
= M(xi,j+1). Otherwise, G(i, j) = 0. Then, we use potential:

Φ(on, off) =
n∑

i=1

|Si|∑
j=1

|Si|∑
l=j

G(i, j)− 1
2

n∑
i=1

(|Si|2).

As required, the initial potential value depends only on the configuration
(and thus n and k) but not on the sequence of requests. (While this potential
can have negative values, it is bounded below by −k2/2. Should readers be more
comfortable with non-negative potentials, consider adding k2/2 to this one.)

Here, the first term (the triple summation) represents the lazy potential: over
all n (offline) processors, over all objects on that (offline) processor, take the
number of more recent objects which reside on a different (online) processor
than the next oldest (by timestamp) object. Although this description relates
the equation to to the number of times objects can be forced to move, the
equation definition itself does not highlight this intuitively. We will return with
intuition for the second term later.

Using Lemma 6, we can finish quickly: we know that any offline move of an
object from processor i to j can only increase the lazy potential by at most
2|Sj| + 1, where Sj is the set of objects on processor j from before the move.
(After the move, Sj will have one more object, Si will have one fewer object, and
no other sets will change.) The change in the potential for second term will add
−|Sj|+ |Si|−1 (exactly) to the potential (where we use the set sizes from before
the move). The sum of these two changes is (2|Sj| + 1) + (−|Sj| + |Si| − 1) =
|Si|+ |Sj | ≤ k. Thus, any offline move can increase the potential by at most k.

For the online move, we have already argued that the lazy potential can be
used to pay for any online moves. Here, the second term of the potential is

Online Distributed Object Migration 341

independent of the online configuration, and is unchanged for any online move,
so the lazy potential can still be used to pay for the online moves.

Of note is the intuitiveness of the preceding proof (paired with Lemma 6), com-
pared to a proof in which the potential function above is simply given, and al-
gebraically proved to be sufficient and correct, with little or no insight provided
for the meaning of the potential.

As mentioned, the first half of the potential function above is the lazy poten-
tial. The second half acts as an “offline potential”: given an offline configuration,
with Si objects on each processor, k+ 1

2

∑n
i=1 (|Si|2) is the highest possible lazy

potential for that configuration against any online configuration. (Which will be
equal to the lazy potential term when all G(i, j) = 1.) Since we are concerned
more with the change in potential instead of potential, dropping the leading k
term makes no difference. To intuitively explain why the offline potential adds
negatively to the total potential, if the adversary makes a move into a position
with a “potentially” higher lazy potential, but the lazy potential does not in fact
change, somehow the adversary has “lost ground” against its goal of getting a
high lazy potential. Without knowledge of the online configuration, one would
expect such a move to increase the lazy potential. Without a matching increase
in the lazy potential, the adversary has not met “expectations”, explaining the
total drop in potential.

From this and Lemma 3, we trivially get:

Corollary 3. bdom, with k mobile objects on n processors, has deterministic
competitive ratio k. Timestamp achieves this ratio.

8 Conclusions and Future Work

Our contributions include:

– The introduction of dom, a generalization of the file migration problem
– A lower bound proof, demonstrating that a simple case of the object mi-

gration problem has a competitive ratio much higher than the known upper
bound for the general file migration problem

– An algorithm Timestamp and proof of its optimal competitive ratio for the
bdom variant

– Implicit potential analysis using the lazy potential, an intuitive potential
function analysis, providing more insight and fewer calculations than explicit
potential function analysis

In the future, we hope to explore the frequency with which online algorithms
can be analyzed using natural potential functions, either by implicit potential
analysis, or at least with intuitive potentials such as the lazy and offline potentials
used here. The hope is that the more intuitive base for potential functions will
allow them to be found more quickly.

Besides the analysis technique, dom also merits further study, to find algo-
rithms with good performance on more general versions of the problem, in both

342 D.S. Taylor

deterministic and randomized settings. A rich selection of variants are possible,
many already considered for file migration problems. Some possibilities:

– Bounded Capacity Processors: Each processor in the network has a fixed
capacity, and the total size of all objects on that processor must be no more
than this size. This variant incorporates complexities which arise from the
distributed paging algorithm ([2,6,13,21] and many more), a generalization
of both the file migration problem and caching. In distributed paging, files
do interact with each other, but only indirectly, through limited processor
capacities, rather than through the direct requests of object migration.

– Distributed Control: In this work, we have implicitly used a centralized con-
troller to manage movement, but we could require that decisions must be
made locally at each node. Only information available at that processor
(such as past requests to/by objects on the processor, or perhaps informa-
tion carried with those requests) is available to make the decision. When a
request for object y originates from object x, it may also be that the ma-
chine on which x resides has no way of knowing where y is currently located.
Extra communication may be needed to track object movements. While we
do not address this issue here, related issues for file migration problems are
addressed in [5].

– Additional Customized Costs: It may be that even for two objects on the
same machine, communication is not free, or perhaps it depends on how
many objects are on the machine, or which specific machines. (This could
be used to model different threads running in parallel for different objects,
on non-identical machines.) Further, communication between two objects on
different machines may depend on which two machines they are on. (These
options can be used to add some of the generality of metrical task systems
to the problem.)

Although we have not considered these more complex variants here, we hope
that this work highlights the new difficulties that object migration poses. Re-
quests between two mobile objects allow for extra chances to “make bad choices”,
thus increasing the competitive ratio well beyond what was seen, even for com-
plex variants of file migration. When bounded capacity processors are added into
the mix, distributed object migration becomes a generalization of distributed
paging, but once again, requests between two mobile objects pose problems be-
yond those normally considered for distributed paging.

Acknowledgments

I would like to thank Miriam Busch, who introduced me to this problem in dis-
cussions work with her advisor [9,20]. I would also like to thank Peter Widmayer
for helpful discussions on presentation, Elias Koutsoupias for extensive discus-
sions about both research and the written presentation, and anonymous referees
for their comments.

Online Distributed Object Migration 343

References

1. Susanne Albers. Improved randomized on-line algorithms for the list update
problem. In Proc. 6th Symp. on Discrete Algorithms (SODA), pages 412–419.
ACM/SIAM, 1995.

2. Susanne Albers and Hisashi Koga. Page migration with limited local memory
capacity. In Proc. 4th Workshop on Algorithms and Data Structures (WADS),
volume 955 of Lecture Notes in Comput. Sci., pages 147–158. Springer, 1995.

3. Baruch Awerbuch, Yair Bartal, and Amos Fiat. Competitive distributed file allo-
cation. In Proc. 25th Symp. Theory of Computing (STOC), pages 164–173. ACM,
1993.

4. Baruch Awerbuch, Yair Bartal, and Amos Fiat. Competitive distributed file allo-
cation. Inform. and Comput., 185(1):1–40, 2003.

5. Baruch Awerbuch and David Peleg. Online tracking of mobile users. J. ACM,
42(5):1021–1058, 1995.

6. Yair Bartal. Competitive analysis of distributed on-line problems - distributed pag-
ing. PhD thesis, Tel-Aviv University, 1994.

7. Wolfgang Bein, Marek Chrobak, and Lawrence L. Larmore. The 3-server problem
in the plane. Theoret. Comput. Sci., 287:387–391, 2002.

8. David L. Black and Daniel D. Sleator. Competitive algorithms for replication and
migration problems. Technical Report CMU-CS-89-201, Department of Computer
Science, Carnegie-Mellon University, 1989.

9. Miriam Busch. Adding dynamic object migration to the distributing compiler
Pangaea. Master’s thesis, Institute of Computer Science, Freie Universität Berlin,
September 2001.

10. Gruia Călinescuo, Howard Karloff, and Yuval Rabani. An improved approxima-
tion algorithm for MULTIWAY CUT. Journal of Computer and System Sciences,
60(3):564–574, 2000.

11. Marek Chrobak, Elias Koutsoupias, and John Noga. More on randomized on-line
algorithms for caching. Theoret. Comput. Sci., 290:1997–2008, 2003.

12. Marek Chrobak and Lawrence L. Larmore. HARMONIC is three-competitive for
two servers. Theoret. Comput. Sci., 98:339–346, 1992.

13. Marek Chrobak, Lawrence L. Larmore, Nick Reingold, and Jeffery Westbrook. Page
migration algorithms using work functions. In Proc. 4th International Symp. on
Algorithms and Computation (ISAAC), volume 762 of Lecture Notes in Comput.
Sci., pages 406–415. Springer, 1993.

14. Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour,
and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM Journal on
Computing, 23(4):864–894, August 1994.

15. Lawrence W. Dowdy and Derrell V. Foster. Comparative models of the file assign-
ment problem. ACM Computing Surveys, 14:287–313, 1982.

16. Amos Fiat and Gerhard J. Woeginger, editors. Online Algorithms: The State of
the Art. Springer, 1998.

17. Elias Koutsoupias. Weak adversaries for the k-server problem. In Proc. 40th Symp.
Foundations of Computer Science (FOCS), pages 444–449. IEEE, 1999.

18. Daniel Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging
rules. Commun. ACM, 28:202–208, 1985.

344 D.S. Taylor

19. Daniel D. Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J.
ACM, 32:652–686, 1985.

20. André Spiegel. Automatic Distribution of Object-Oriented Programs. PhD thesis,
FU Berlin, FB Mathematik und Informatik, 2002.

21. Jeffery Westbrook. Randomized algorithms for multiprocessor page migration. In
Lyle A. McGeoch and Daniel D. Sleator, editors, On-line Algorithms, volume 7 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages
135–150. AMS/ACM, 1992.

Author Index

Ageev, Alexander A. 1
Aggarwal, Gagan 15
Amzallag, David 29

Bar-Noy, Amotz 43
Berg, Mark de 55
Bodlaender, Hans 69
Bonifaci, Vincenzo 83
Boyar, Joan 95

Cabello, Sergio 55
Cardinal, Jean 108
Chan, Timothy M. 121

Das, Aparna 132

Ehmsen, Martin R. 95
Epstein, Leah 146, 160

Feldman, Jon 15
Feremans, Corinne 69
Fukunaga, Takuro 188
Fürer, Martin 174

Galbiati, Giulia 202
Goldengorin, Boris 214
Golin, Mordecai J. 43
Grigoriev, Alexander 69
Gutin, Gregory 214

Han, Xin 226
Har-Peled, Sariel 55
Harks, Tobias 240
Heinz, Stefan 240
Hochbaum, Dorit S. 253
Huang, Jing 214

Kasiviswanathan, Shiva Prasad 174
Kenyon, Claire 132

Knoche, Jörg 265
Kolman, Petr 279
Kononov, Alexander V. 1
Krysta, Piotr 265

Langerman, Stefan 108
Larsen, Kim S. 95
Levin, Asaf 160, 253, 290
Levy, Eythan 108

Maffioli, Francesco 202
Manthey, Bodo 302
Muthukrishnan, S. 15

Nagamochi, Hiroshi 188
Naor, Joseph (Seffi) 29
Nikoletseas, S. 316

Penninkx, Eelko 69
Pfetsch, Marc E. 240

Ram, L. Shankar 302
Raptopoulos, C. 316
Raz, Danny 29

Sitters, René 69
Spirakis, P. 316
Stougie, Leen 83

Taylor, David Scot 330

Waleń, Tomasz 279
Wolle, Thomas 69

Ye, Deshi 226

Zarrabi-Zadeh, Hamid 121
Zhang, Yan 43
Zhou, Yong 226

	Frontmatter
	Approximation Algorithms for Scheduling Problems with Exact Delays
	Bidding to the Top: VCG and Equilibria of Position-Based Auctions
	Coping with Interference: From Maximum Coverage to Planning Cellular Networks
	Online Dynamic Programming Speedups
	Covering Many or Few Points with Unit Disks
	On the Minimum Corridor Connection Problem and Other Generalized Geometric Problems
	Online {\itshape k}-Server Routing Problems
	Theoretical Evidence for the Superiority of LRU-2 over LRU for the Paging Problem
	Improved Approximation Bounds for Edge Dominating Set in Dense Graphs
	A Randomized Algorithm for Online Unit Clustering
	On Hierarchical Diameter-Clustering, and the Supplier Problem
	Bin Packing with Rejection Revisited
	On Bin Packing with Conflicts
	Approximate Distance Queries in Disk Graphs
	Network Design with Edge-Connectivity and Degree Constraints
	Approximating Maximum Cut with Limited Unbalance
	Worst Case Analysis of Max-Regret, Greedy and Other Heuristics for Multidimensional Assignment and Traveling Salesman Problems
	Improved Online Hypercube Packing
	Competitive Online Multicommodity Routing
	The {\itshape k}-Allocation Problem and Its Variants
	An Experimental Study of the Misdirection Algorithm for Combinatorial Auctions
	Reversal Distance for Strings with Duplicates: Linear Time Approximation Using Hitting Set
	Approximating the Unweighted {\itshape k}-Set Cover Problem: Greedy Meets Local Search
	Approximation Algorithms for Multi-criteria Traveling Salesman Problems
	The Survival of the Weakest in Networks
	Online Distributed Object Migration
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

